Quantum Wells, Wires and Dots Theoretical and Computational Physics of Semiconductor Nanostructures.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2016.
|
Colección: | New York Academy of Sciences Ser.
|
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright
- Dedication
- Table of Contents
- List of contributors
- Principal authors
- Contributing authors
- Preface
- Acknowledgements
- Introduction
- References
- Chapter 1: Semiconductors and heterostructures
- 1.1 The mechanics of waves
- 1.2 Crystal structure
- 1.3 The effective mass approximation
- 1.4 Band theory
- 1.5 Heterojunctions
- 1.6 Heterostructures
- 1.7 The envelope function approximation
- 1.8 Band non-parabolicity
- 1.9 The reciprocal lattice
- Exercises
- References
- Chapter 2: Solutions to Schrödinger's equation
- 2.1 The infinite well
- 2.2 In-plane dispersion
- 2.3 Extension to include band non-parabolicity
- 2.4 Density of states
- 2.5 Subband populations
- 2.6 Thermalised distributions
- 2.7 Finite well with constant mass
- 2.8 Extension to multiple-well systems
- 2.9 The asymmetric single quantum well
- 2.10 Addition of an electric field
- 2.11 The infinite superlattice
- 2.12 The single barrier
- 2.13 The double barrier
- 2.14 Extension to include electric field
- 2.15 Magnetic fields and Landau quantisation
- 2.16 In summary
- Exercises
- References
- Chapter 3: Numerical solutions
- 3.1 Bisection root-finding
- 3.2 Newton-Raphson root finding
- 3.3 Numerical differentiation
- 3.4 Discretised Schrödinger equation
- 3.5 Shooting method
- 3.6 Generalised initial conditions
- 3.7 Practical implementation of the shooting method
- 3.8 Heterojunction boundary conditions
- 3.9 Matrix solutions of the discretised Schrödinger equation
- 3.10 The parabolic potential well
- 3.11 The Pöschl-Teller potential hole
- 3.12 Convergence tests
- 3.13 Extension to variable effective mass
- 3.14 The double quantum well
- 3.15 Multiple quantum wells and finite superlattices
- 3.16 Addition of electric field
- 3.17 Extension to include variable permittivity
- 3.18 Quantum-confined Stark effect
- 3.19 Field-induced anti-crossings
- 3.20 Symmetry and selection rules
- 3.21 The Heisenberg uncertainty principle
- 3.22 Extension to include band non-parabolicity
- 3.23 Poisson's equation
- 3.24 Matrix solution of Poisson's equation
- 3.25 Self-consistent Schrödinger-Poisson solution
- 3.26 Modulation doping
- 3.27 The high-electron-mobility transistor
- 3.28 Band filling
- Exercises
- References
- Chapter 4: Diffusion
- 4.1 Introduction
- 4.2 Theory