Cargando…

Quantum Wells, Wires and Dots Theoretical and Computational Physics of Semiconductor Nanostructures.

Detalles Bibliográficos
Autor principal: Harrison, Paul
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2016.
Colección:New York Academy of Sciences Ser.
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title Page
  • Copyright
  • Dedication
  • Table of Contents
  • List of contributors
  • Principal authors
  • Contributing authors
  • Preface
  • Acknowledgements
  • Introduction
  • References
  • Chapter 1: Semiconductors and heterostructures
  • 1.1 The mechanics of waves
  • 1.2 Crystal structure
  • 1.3 The effective mass approximation
  • 1.4 Band theory
  • 1.5 Heterojunctions
  • 1.6 Heterostructures
  • 1.7 The envelope function approximation
  • 1.8 Band non-parabolicity
  • 1.9 The reciprocal lattice
  • Exercises
  • References
  • Chapter 2: Solutions to Schrödinger's equation
  • 2.1 The infinite well
  • 2.2 In-plane dispersion
  • 2.3 Extension to include band non-parabolicity
  • 2.4 Density of states
  • 2.5 Subband populations
  • 2.6 Thermalised distributions
  • 2.7 Finite well with constant mass
  • 2.8 Extension to multiple-well systems
  • 2.9 The asymmetric single quantum well
  • 2.10 Addition of an electric field
  • 2.11 The infinite superlattice
  • 2.12 The single barrier
  • 2.13 The double barrier
  • 2.14 Extension to include electric field
  • 2.15 Magnetic fields and Landau quantisation
  • 2.16 In summary
  • Exercises
  • References
  • Chapter 3: Numerical solutions
  • 3.1 Bisection root-finding
  • 3.2 Newton-Raphson root finding
  • 3.3 Numerical differentiation
  • 3.4 Discretised Schrödinger equation
  • 3.5 Shooting method
  • 3.6 Generalised initial conditions
  • 3.7 Practical implementation of the shooting method
  • 3.8 Heterojunction boundary conditions
  • 3.9 Matrix solutions of the discretised Schrödinger equation
  • 3.10 The parabolic potential well
  • 3.11 The Pöschl-Teller potential hole
  • 3.12 Convergence tests
  • 3.13 Extension to variable effective mass
  • 3.14 The double quantum well
  • 3.15 Multiple quantum wells and finite superlattices
  • 3.16 Addition of electric field
  • 3.17 Extension to include variable permittivity
  • 3.18 Quantum-confined Stark effect
  • 3.19 Field-induced anti-crossings
  • 3.20 Symmetry and selection rules
  • 3.21 The Heisenberg uncertainty principle
  • 3.22 Extension to include band non-parabolicity
  • 3.23 Poisson's equation
  • 3.24 Matrix solution of Poisson's equation
  • 3.25 Self-consistent Schrödinger-Poisson solution
  • 3.26 Modulation doping
  • 3.27 The high-electron-mobility transistor
  • 3.28 Band filling
  • Exercises
  • References
  • Chapter 4: Diffusion
  • 4.1 Introduction
  • 4.2 Theory