|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1347026620 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230209s2016 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d OCLCQ
|d OCLCO
|d OCLCQ
|d EBLCP
|d OCLCQ
|d OCLCL
|
020 |
|
|
|a 9781118952849
|
020 |
|
|
|a 1118952847
|
035 |
|
|
|a (OCoLC)1347026620
|
082 |
0 |
4 |
|a 519.5
|q OCoLC
|2 18/eng/20230216
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Searle, Shayle R.
|
245 |
1 |
0 |
|a Linear Models
|h [electronic resource].
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2016.
|
300 |
|
|
|a 1 online resource (685 p.).
|
490 |
1 |
|
|a New York Academy of Sciences Ser.
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Intro -- Linear Models -- Contents -- Preface -- Preface to First Edition -- About the Companion Website -- Introduction and Overview -- 1 Generalized Inverse Matrices -- 1 Introduction -- a Definition and Existence of a Generalized Inverse -- b An Algorithm for Obtaining a Generalized Inverse -- c Obtaining Generalized Inverses Using the Singular Value Decomposition (SVD) -- 2 Solving Linear Equations -- a Consistent Equations -- b Obtaining Solutions -- c Properties of Solutions -- 3 The Penrose Inverse -- 4 Other Definitions -- 5 Symmetric Matrices -- a Properties of a Generalized Inverse
|
505 |
8 |
|
|a B Two More Generalized Inverses of -- 6 Arbitrariness in a Generalized Inverse -- 7 Other Results -- 8 Exercises -- 2 Distributions and Quadratic Forms -- 1 Introduction -- 2 Symmetric Matrices -- 3 Positive Definiteness -- 4 Distributions -- a Multivariate Density Functions -- b Moments -- c Linear Transformations -- d Moment and Cumulative Generating Functions -- e Univariate Normal -- f Multivariate Normal -- g Central 2, F, and t -- h Non-central 2 -- i Non-central F -- j The Non-central t Distribution -- 5 Distribution of Quadratic Forms -- a Cumulants -- b Distributions -- c Independence
|
505 |
8 |
|
|a 6 Bilinear Forms -- 7 Exercises -- 3 Regression for the Full-Rank Model -- 1 Introduction -- a The Model -- b Observations -- c Estimation -- d The General Case of k x Variables -- e Intercept and No-Intercept Models -- 2 Deviations From Means -- 3 Some Methods of Estimation -- a Ordinary Least Squares -- b Generalized Least Squares -- c Maximum Likelihood -- d The Best Linear Unbiased Estimator (b.l.u.e.)(Gauss-Markov Theorem) -- e Least-squares Theory When The Parameters are Random Variables -- 4 Consequences of Estimation -- a Unbiasedness -- b Variances -- c Estimating E(y)
|
505 |
8 |
|
|a D Residual Error Sum of Squares -- e Estimating the Residual Error Variance -- f Partitioning the Total Sum of Squares -- g Multiple Correlation -- 5 Distributional Properties -- a The Vector of Observations y is Normal -- b The Least-square Estimator ̂b is Normal -- c The Least-square Estimator ̂b and the Estimator of the Variance ̂ 2 are Independent -- d The Distribution of SSE/2 is a 2 Distribution -- e Non-central 2′ s -- f F-distributions -- g Analyses of Variance -- h Tests of Hypotheses -- i Confidence Intervals -- j More Examples -- k Pure Error -- 6 The General Linear Hypothesis
|
505 |
8 |
|
|a A Testing Linear Hypothesis -- b Estimation Under the Null Hypothesis -- c Four Common Hypotheses -- d Reduced Models -- e Stochastic Constraints -- f Exact Quadratic Constraints (Ridge Regression) -- 7 Related Topics -- a The Likelihood Ratio Test -- b Type I and Type II Errors -- c The Power of a Test -- d Estimating Residuals -- 8 Summary of Regression Calculations -- 9 Exercises -- 4 Introducing Linear Models: Regression on Dummy Variables -- 1 Regression on Allocated Codes -- a Allocated Codes -- b Difficulties and Criticism -- c Grouped Variables -- d Unbalanced Data
|
500 |
|
|
|a 2 Regression on Dummy (0, 1) Variables
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
655 |
|
0 |
|a Electronic books.
|
758 |
|
|
|i has work:
|a Linear models (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGW4xqWYVjDFyKTRKmDdcd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Searle, Shayle R.
|t Linear Models
|d Newark : John Wiley & Sons, Incorporated,c2016
|z 9781118952832
|
830 |
|
0 |
|a New York Academy of Sciences Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7104274
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7104274
|
994 |
|
|
|a 92
|b IZTAP
|