An Introduction to Analysis of Financial Data with R
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2012.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- 1: Financial Data and Their Properties
- 1.1 Asset Returns
- 1.2 Bond Yields and Prices
- 1.3 Implied Volatility
- 1.4 R Packages and Demonstrations
- 1.4.1 Installation of R Packages
- 1.4.2 The Quantmod Package
- 1.4.3 Some Basic R Commands
- 1.5 Examples of Financial Data
- 1.6 Distributional Properties of Returns
- 1.6.1 Review of Statistical Distributions and Their Moments
- 1.7 Visualization of Financial Data
- 1.8 Some Statistical Distributions
- 1.8.1 Normal Distribution
- 1.8.2 Lognormal Distribution
- 1.8.3 Stable Distribution
- 1.8.4 Scale Mixture of Normal Distributions
- 1.8.5 Multivariate Returns
- Exercises
- References
- 2: Linear Models for Financial Time Series
- 2.1 Stationarity
- 2.2 Correlation and Autocorrelation Function
- 2.3 White Noise and Linear Time Series
- 2.4 Simple Autoregressive Models
- 2.4.1 Properties of AR Models
- 2.4.2 Identifying Ar Models in Practice
- 2.4.3 Goodness of Fit
- 2.4.4 Forecasting
- 2.5 Simple Moving Average Models
- 2.5.1 Properties of MA Models
- 2.5.2 Identifying MA Order
- 2.5.3 Estimation
- 2.5.4 Forecasting Using MA Models
- 2.6 Simple Arma Models
- 2.6.1 Properties of ARMA(1,1) Models
- 2.6.2 General ARMA Models
- 2.6.3 Identifying ARMA Models
- 2.6.4 Forecasting Using an ARMA Model
- 2.6.5 Three Model Representations for an ARMA Model
- 2.7 Unit-root Nonstationarity
- 2.7.1 Random Walk
- 2.7.2 Random Walk with Drift
- 2.7.3 Trend-stationary Time Series
- 2.7.4 General Unit-root Nonstationary Models
- 2.7.5 Unit-root Test
- 2.8 Exponential Smoothing
- 2.9 Seasonal Models
- 2.9.1 Seasonal Differencing
- 2.9.2 Multiplicative Seasonal Models
- 2.9.3 Seasonal Dummy Variable
- 2.10 Regression Models with Time Series Errors
- 2.11 Long-memory Models
- 2.12 Model Comparison and Averaging
- 2.12.1 In-sample Comparison
- 2.12.2 Out-of-sample Comparison
- 2.12.3 Model Averaging
- Exercises
- References
- 3: Case Studies of Linear Time Series
- 3.1 Weekly Regular Gasoline Price
- 3.1.1 Pure Time Series Model
- 3.1.2 Use of Crude Oil Prices
- 3.1.3 Use of Lagged Crude Oil Prices
- 3.1.4 Out-of-sample Predictions
- 3.2 Global Temperature Anomalies
- 3.2.1 Unit-root Stationarity
- 3.2.2 Trend-nonstationarity
- 3.2.3 Model Comparison
- 3.2.4 Long-term Prediction
- 3.2.5 Discussion
- 3.3 Us Monthly Unemployment Rates
- 3.3.1 Univariate Time Series Models
- 3.3.2 An Alternative Model
- 3.3.3 Model Comparison
- 3.3.4 Use of Initial Jobless Claims
- 3.3.5 Comparison
- Exercises
- References
- 4: Asset Volatility and Volatility Models
- 4.1 Characteristics of Volatility
- 4.2 Structure of a Model
- 4.3 Model Building
- 4.4 Testing for ARCH Effect
- 4.5 The Arch Model
- 4.5.1 Properties of ARCH Models
- 4.5.2 Advantages and Weaknesses of ARCH Models
- 4.5.3 Building an ARCH Model
- 4.5.4 Some Examples