Loss Models Further Topics.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2013.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- CONTENTS
- Preface
- 1 Introduction
- 2 Coxian and related distributions
- 2.1 Introduction
- 2.2 Combinations of exponentials
- 2.3 Coxian-2 distributions
- 3 Mixed Erlang distributions
- 3.1 Introduction
- 3.2 Members of the mixed Erlang class
- 3.3 Distributional properties
- 3.4 Mixed Erlang claim severity models
- 4 Extreme value distributions
- 4.1 Introduction
- 4.2 Distribution of the maximum
- 4.2.1 From a fixed number of losses
- 4.2.2 From a random number of losses
- 4.3 Stability of the maximum of the extreme value distribution
- 4.4 The Fisher-Tippett theorem
- 4.5 Maximum domain of attraction
- 4.6 Generalized Pareto distributions
- 4.7 Stability of excesses of the generalized Pareto
- 4.8 Limiting distributions of excesses
- 4.9 Parameter estimation
- 4.9.1 Maximum likelihood estimation from the extreme value distribution
- 4.9.2 Maximum likelihood estimation for the generalized Pareto distribution
- 4.9.3 Estimating the Pareto shape parameter
- 4.9.4 Estimating extreme probabilities
- 4.9.5 Mean excess plots
- 4.9.6 Further reading
- 4.9.7 Exercises
- 5 Analytic and related methods for aggregate claim models
- 5.1 Introduction
- 5.2 Elementary approaches
- 5.3 Discrete analogues
- 5.4 Right-tail asymptotics for aggregate losses
- 5.4.1 Exercises
- 6 Computational methods for aggregate models
- 6.1 Recursive techniques for compound distributions
- 6.2 Inversion methods
- 6.2.1 Fast Fourier transform
- 6.2.2 Direct numerical inversion
- 6.3 Calculations with approximate distributions
- 6.3.1 Arithmetic distributions
- 6.3.2 Empirical distributions
- 6.3.3 Piecewise linear cdf
- 6.3.4 Exercises
- 6.4 Comparison of methods
- 6.5 The individual risk model
- 6.5.1 De.nition and notation
- 6.5.2 Direct calculation
- 6.5.3 Recursive calculation
- 7 Counting Processes
- 7.1 Nonhomogeneous birth processes
- 7.1.1 Exercises
- 7.2 Mixed Poisson processes
- 7.2.1 Exercises
- 8 Discrete Claim Count Models
- 8.1 Unification of the (a, b, 1) and mixed Poisson classes
- 8.2 A class of discrete generalized tail-based distributions
- 8.3 Higher order generalized tail-based distributions
- 8.4 Mixed Poisson properties of generalized tail-based distributions
- 8.5 Compound geometric properties of generalized tail-based distributions
- 8.5.1 Exercises
- 9 Compound distributions with time dependent claim amounts
- 9.1 Introduction
- 9.2 A model for infiation
- 9.3 A model for claim payment delays
- 10 Copula models
- 10.1 Introduction
- 10.2 Sklar's theorem and copulas
- 10.3 Measures of dependency
- 10.3.1 Spearman's rho
- 10.3.2 Kendall's tau
- 10.4 Tail dependence
- 10.5 Archimedean copulas
- 10.5.1 Exercise
- 10.6 Elliptical copulas
- 10.6.1 Exercise
- 10.7 Extreme value copulas
- 10.7.1 Exercises
- 10.8 Archimax copulas