Fourier Transforms Principles and Applications.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2014.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- FOURIER TRANSFORMS
- Contents
- Preface
- Philosophy and Distinctives
- Flow of the Book
- Suggested Use
- Acknowledgments
- 1 Review of Prerequisite Mathematics
- 1.1 Common notation
- 1.2 Vectors in space
- 1.3 Complex numbers
- 1.4 Matrix algebra
- 1.5 Mappings and functions
- 1.6 Sinusoidal functions
- 1.7 Complex exponentials
- 1.8 Geometric series
- 1.9 Results from calculus
- 1.10 Top 10 ways to avoid errors in calculations
- Problems
- 2 Vector Spaces
- 2.1 Signals and vector spaces
- 2.2 Finite-dimensional vector spaces
- 2.2.1 Norms and Metrics
- 2.2.2 Inner Products
- 2.2.3 Orthogonal Expansion and Approximation
- 2.3 Infinite-dimensional vector spaces
- 2.3.1 Convergent Sequences
- 2.3.2 Infinite Sequences and the p Spaces
- 2.3.3 Functions and the Lp Spaces
- 2.3.4 Orthogonal Expansions in 2 and L2
- 2.4 Operators
- 2.5 Creating orthonormal bases-the Gram-Schmidt process
- 2.6 Summary
- Problems
- 3 The Discrete Fourier Transform
- 3.1 Sinusoidal sequences
- 3.2 The Discrete Fourier transform
- 3.3 Interpreting the DFT
- 3.4 DFT properties and theorems
- 3.5 Fast Fourier transform
- 3.6 Discrete cosine transform
- 3.7 Summary
- Problems
- 4 The Fourier Series
- 4.1 Sinusoids and physical systems
- 4.2 Definitions and interpretation
- 4.3 Convergence of the Fourier series
- 4.4 Fourier series properties and theorems
- 4.5 The heat equation
- 4.6 The vibrating string
- 4.7 Antenna arrays
- 4.8 Computing the Fourier series
- 4.9 Discrete time Fourier transform
- 4.9.1 Convergence Properties
- 4.9.2 Theorems
- 4.9.3 Discrete-time Systems
- 4.9.4 Computing the DTFT
- 4.10 Summary
- Problems
- 5 The Fourier Transform
- 5.1 From Fourier series to Fourier transform
- 5.2 Basic properties and some examples
- 5.3 Fourier transform theorems
- 5.4 Interpreting the Fourier transform
- 5.5 Convolution
- 5.5.1 Definition and basic properties
- 5.5.2 Convolution and Linear Systems
- 5.5.3 Correlation
- 5.6 More about the Fourier transform
- 5.6.1 Fourier inversion in L1
- 5.6.2 Fourier Transform in L2
- 5.6.3 More about convolution
- 5.7 Time-bandwidth relationships
- 5.8 Computing the Fourier transform
- 5.9 Time-frequency transforms
- 5.10 Summary
- Problems
- 6 Generalized Functions
- 6.1 Impulsive signals and spectra
- 6.2 The delta function in a nutshell
- 6.3 Generalized functions
- 6.3.1 Functions and Generalized Functions
- 6.3.2 Generalized Functions as Sequences of Functions
- 6.3.3 Calculus of Generalized Functions
- 6.4 Generalized Fourier transform
- 6.4.1 Definition
- 6.4.2 Fourier Theorems
- 6.5 Sampling theory and Fourier series
- 6.5.1 Fourier Series, Again
- 6.5.2 Periodic Generalized Functions
- 6.5.3 The Sampling Theorem
- 6.5.4 Discrete-time Fourier Transform
- 6.6 Unifying the Fourier family
- 6.6.1 Basis Functions and Orthogonality Relationships
- 6.6.2 Sampling and Replication