Modeling and Analysis of Compositional Data
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2015.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- About the Authors
- Acknowledgments
- Chapter 1 Introduction
- Chapter 2 Compositional Data and Their Sample Space
- 2.1 Basic concepts
- 2.2 Principles of compositional analysis
- 2.2.1 Scale invariance
- 2.2.2 Permutation invariance
- 2.2.3 Subcompositional coherence
- 2.3 Zeros, missing values, and other irregular components
- 2.3.1 Kinds of irregular components
- 2.3.2 Strategies to analyze irregular data
- 2.4 Exercises
- Chapter 3 The Aitchison Geometry
- 3.1 General comments
- 3.2 Vector space structure
- 3.3 Inner product, norm and distance
- 3.4 Geometric figures
- 3.5 Exercises
- Chapter 4 Coordinate Representation
- 4.1 Introduction
- 4.2 Compositional observations in real space
- 4.3 Generating systems
- 4.4 Orthonormal coordinates
- 4.5 Balances
- 4.6 Working on coordinates
- 4.7 Additive logratio coordinates (alr)
- 4.8 Orthogonal projections
- 4.9 Matrix operations in the simplex
- 4.9.1 Perturbation-linear combination of compositions
- 4.9.2 Linear transformations of SD: endomorphisms
- 4.9.3 Other matrix transformations on SD: nonlinear transformations
- 4.10 Coordinates leading to alternative Euclidean structures
- 4.11 Exercises
- Chapter 5 Exploratory Data Analysis
- 5.1 General remarks
- 5.2 Sample center, total variance, and variation matrix
- 5.3 Centering and scaling
- 5.4 The biplot: a graphical display
- 5.4.1 Construction of a biplot
- 5.4.2 Interpretation of a 2D compositional biplot
- 5.5 Exploratory analysis of coordinates
- 5.6 A geological example
- 5.7 Linear trends along principal components
- 5.8 A nutrition example
- 5.9 A political example
- 5.10 Exercises
- Chapter 6 Random Compositions
- 6.1 Sample space
- 6.1.1 Conventional approach to the sample space of compositions
- 6.1.2 A compositional approach to the sample space of compositions
- 6.1.3 Definitions related to random compositions
- 6.2 Variability and center
- 6.3 Probability distributions on the simplex
- 6.3.1 The normal distribution on the simplex
- 6.3.2 The Dirichlet distribution
- 6.3.3 Other distributions
- 6.4 Exercises
- Chapter 7 Statistical Inference
- 7.1 Point estimation of center and variability
- 7.2 Testing hypotheses on compositional normality
- 7.3 Testing hypotheses about two populations
- 7.4 Probability and confidence regions for normal data
- 7.5 Bayesian estimation with count data
- 7.6 Exercises
- Chapter 8 Linear Models
- 8.1 Linear regression with compositional response
- 8.2 Regression with compositional covariates
- 8.3 Analysis of variance with compositional response
- 8.4 Linear discrimination with compositional predictor
- 8.5 Exercises
- Chapter 9 Compositional Processes
- 9.1 Linear processes
- 9.2 Mixture processes
- 9.3 Settling processes
- 9.4 Simplicial derivative
- 9.5 Elementary differential equations
- 9.5.1 Constant derivative