Understanding and Applying Basic Statistical Methods Using R
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2016.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- List of Symbols
- Preface
- About the Companion Website
- Chapter 1 Introduction
- 1.1 Samples Versus Populations
- 1.2 Comments on Software
- 1.3 R Basics
- 1.3.1 Entering Data
- 1.3.2 Arithmetic Operations
- 1.3.3 Storage Types and Modes
- 1.3.4 Identifying and Analyzing Special Cases
- 1.4 R Packages
- 1.5 Access to Data Used in this Book
- 1.6 Accessing More Detailed Answers to the Exercises
- 1.7 Exercises
- Chapter 2 Numerical Summaries of Data
- 2.1 Summation Notation
- 2.2 Measures of Location
- 2.2.1 The Sample Mean
- 2.2.2 The Median
- 2.2.3 Sample Mean versus Sample Median
- 2.2.4 Trimmed Mean
- 2.2.5 R function mean, tmean, and median
- 2.3 Quartiles
- 2.3.1 R function idealf and summary
- 2.4 Measures of Variation
- 2.4.1 The Range
- 2.4.2 R function Range
- 2.4.3 Deviation Scores, Variance, and Standard Deviation
- 2.4.4 R Functions var and sd
- 2.4.5 The Interquartile Range
- 2.4.6 MAD and the Winsorized Variance
- 2.4.7 R Functions winvar, winsd, idealfIQR, and mad
- 2.5 Detecting Outliers
- 2.5.1 A Classic Outlier Detection Method
- 2.5.2 The Boxplot Rule
- 2.5.3 The MAD-Median Rule
- 2.5.4 R Functions outms, outbox, and out
- 2.6 Skipped Measures of Location
- 2.6.1 R Function MOM
- 2.7 Summary
- 2.8 Exercises
- Chapter 3 Plots Plus More Basics on Summarizing Data
- 3.1 Plotting Relative Frequencies
- 3.1.1 R Functions table, plot, splot, barplot, and cumsum
- 3.1.2 Computing the Mean and Variance Based on the Relative Frequencies
- 3.1.3 Some Features of the Mean and Variance
- 3.2 Histograms and Kernel Density Estimators
- 3.2.1 R Function hist
- 3.2.2 What Do Histograms Tell Us?
- 3.2.3 Populations, Samples, and Potential Concerns about Histograms
- 3.2.4 Kernel Density Estimators
- 3.2.5 R Functions Density and Akerd
- 3.3 Boxplots and Stem-and-Leaf Displays
- 3.3.1 R Function stem
- 3.3.2 Boxplot
- 3.3.3 R Function boxplot
- 3.4 Summary
- 3.5 Exercises
- Chapter 4 Probability and Related Concepts
- 4.1 The Meaning of Probability
- 4.2 Probability Functions
- 4.3 Expected Values, Population Mean and Variance
- 4.3.1 Population Variance
- 4.4 Conditional Probability and Independence
- 4.4.1 Independence and Dependence
- 4.5 The Binomial Probability Function
- 4.5.1 R Functions dbinom and pbinom
- 4.6 The Normal Distribution
- 4.6.1 Some Remarks about the Normal Distribution
- 4.6.2 The Standard Normal Distribution
- 4.6.3 Computing Probabilities for Any Normal Distribution
- 4.6.4 R Functions pnorm and qnorm
- 4.7 Nonnormality and The Population Variance
- 4.7.1 Skewed Distributions
- 4.7.2 Comments on Transforming Data
- 4.8 Summary
- 4.9 Exercises
- Chapter 5 Sampling Distributions
- 5.1 Sampling Distribution of P, the Proportion of Successes
- 5.2 Sampling Distribution of the Mean Under Normality
- 5.2.1 Determining Probabilities Associated with the Sample Mean