Examples and Problems in Mathematical Statistics
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2014.
|
Colección: | New York Academy of Sciences Ser.
|
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1.6.4 Quantiles of Distributions
- 1.6.5 Transformations
- 1.7 JOINT DISTRIBUTIONS, CONDITIONAL DISTRIBUTIONS AND INDEPENDENCE
- 1.7.1 Joint Distributions
- 1.7.2 Conditional Expectations: General Definition
- 1.7.3 Independence
- 1.8 MOMENTS AND RELATED FUNCTIONALS
- 1.9 MODES OF CONVERGENCE
- 1.10 WEAK CONVERGENCE
- 1.11 LAWS OF LARGE NUMBERS
- 1.11.1 The Weak Law of Large Numbers (WLLN)
- 1.11.2 The Strong Law of Large Numbers (SLLN)
- 1.12 CENTRAL LIMIT THEOREM
- 1.13 MISCELLANEOUS RESULTS
- 1.13.1 Law of the Iterated Logarithm
- 1.13.2 Uniform Integrability
- 1.13.3 Inequalities
- 1.13.4 The Delta Method
- 1.13.5 The Symbols op and Op
- 1.13.6 The Empirical Distribution and Sample Quantiles
- PART II: EXAMPLES
- PART III: PROBLEMS
- PART IV: SOLUTIONS TO SELECTED PROBLEMS
- 2 Statistical Distributions
- PART I: THEORY
- 2.1 INTRODUCTORY REMARKS
- 2.2 FAMILIES OF DISCRETE DISTRIBUTIONS
- 2.2.1 Binomial Distributions
- 2.2.2 Hypergeometric Distributions
- 2.2.3 Poisson Distributions
- 2.2.4 Geometric, Pascal, and Negative Binomial Distributions
- 2.3 SOME FAMILIES OF CONTINUOUS DISTRIBUTIONS
- 2.3.1 Rectangular Distributions
- 2.3.2 Beta Distributions
- 2.3.3 Gamma Distributions
- 2.3.4 Weibull and Extreme Value Distributions
- 2.3.5 Normal Distributions
- 2.3.6 Normal Approximations
- 2.4 TRANSFORMATIONS
- 2.4.1 One-to-One Transformations of Several Variables
- 2.4.2 Distribution of Sums
- 2.4.3 Distribution of Ratios
- 2.5 VARIANCES AND COVARIANCES OF SAMPLE MOMENTS
- 2.6 DISCRETE MULTIVARIATE DISTRIBUTIONS
- 2.6.1 The Multinomial Distribution
- 2.6.2 Multivariate Negative Binomial
- 2.6.3 Multivariate Hypergeometric Distributions
- 2.7 MULTINORMAL DISTRIBUTIONS
- 2.7.1 Basic Theory
- 2.7.2 Distribution of Subvectors and Distributions of Linear Forms
- 2.7.3 Independence of Linear Forms
- 2.8 DISTRIBUTIONS OF SYMMETRIC QUADRATIC FORMS OF NORMAL VARIABLES
- 2.9 INDEPENDENCE OF LINEAR AND QUADRATIC FORMS OF NORMAL VARIABLES
- 2.10 THE ORDER STATISTICS
- 2.11 t-DISTRIBUTIONS
- 2.12 F-DISTRIBUTIONS
- 2.13 THE DISTRIBUTION OF THE SAMPLE CORRELATION
- 2.14 EXPONENTIAL TYPE FAMILIES
- 2.15 APPROXIMATING THE DISTRIBUTION OF THE SAMPLE MEAN: EDGEWORTH AND SADDLEPOINT APPROXIMATIONS
- 2.15.1 Edgeworth Expansion
- 2.15.2 Saddlepoint Approximation
- PART II: EXAMPLES