Cargando…

Understanding MEMS Principles and Applications.

Detalles Bibliográficos
Autor principal: Castañer, Luis
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2015.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title page
  • Copyright
  • Dedication
  • Preface
  • About the Companion Website
  • 1 Scaling of Forces
  • 1.1 Scaling of Forces Model
  • 1.2 Weight
  • 1.3 Elastic Force
  • 1.4 Electrostatic Force
  • 1.5 Capillary Force
  • 1.6 Piezoelectric Force
  • 1.7 Magnetic Force
  • 1.8 Dielectrophoretic Force
  • 1.9 Summary
  • Problems
  • Notes
  • 2 Elasticity
  • 2.1 Stress
  • 2.2 Strain
  • 2.3 Stress-strain Relationship
  • 2.4 Strain-stress Relationship in Anisotropic Materials
  • 2.5 Miller Indices
  • 2.6 Angles of Crystallographic Planes
  • 2.7 Compliance and Stiffness Matrices for Single-Crystal Silicon
  • 2.8 Orthogonal Transformation
  • 2.9 Transformation of the Stress State
  • 2.10 Orthogonal Transformation of the Stiffness Matrix
  • 2.11 Elastic Properties of Selected MEMS Materials
  • Problems
  • 3 Bending of Microstructures
  • 3.1 Static Equilibrium
  • 3.2 Free Body Diagram
  • 3.3 Neutral Plane and Curvature
  • 3.4 Pure Bending
  • 3.5 Moment of Inertia and Bending Moment
  • 3.6 Beam Equation
  • 3.7 End-loaded Cantilever
  • 3.8 Equivalent Stiffness
  • 3.9 Beam Equation for Point Load and Distributed Load
  • 3.10 Castigliano's Second Theorem
  • 3.11 Flexures
  • 3.12 Rectangular Membrane
  • 3.13 Simplified Model for a Rectangular Membrane Under Pressure
  • 3.14 Edge-clamped Circular Membrane
  • Problems
  • 4 Piezoresistance and Piezoelectricity
  • 4.1 Electrical Resistance
  • 4.2 One-dimensional Piezoresistance Model
  • 4.3 Piezoresistance in Anisotropic Materials
  • 4.4 Orthogonal Transformation of Ohm's Law
  • 4.5 Piezoresistance Coefficients Transformation
  • 4.6 Two-dimensional Piezoresistors
  • 4.7 Pressure Sensing with Rectangular Membranes
  • 4.8 Piezoelectricity
  • Problems
  • Notes
  • 5 Electrostatic Driving and Sensing
  • 5.1 Energy and Co-energy
  • 5.2 Voltage Drive
  • 5.3 Pull-in Voltage
  • 5.4 Electrostatic Pressure
  • 5.5 Contact Resistance in Parallel-plate Switches
  • 5.6 Hold-down Voltage
  • 5.7 Dynamic Response of Pull-in-based Actuators
  • 5.8 Charge Drive
  • 5.9 Extending the Stable Range
  • 5.10 Lateral Electrostatic Force
  • 5.11 Comb Actuators
  • 5.12 Capacitive Accelerometer
  • 5.13 Differential Capacitive Sensing
  • 5.14 Torsional Actuator
  • Problems
  • Notes
  • 6 Resonators
  • 6.1 Free Vibration: Lumped-element Model
  • 6.2 Damped Vibration
  • 6.3 Forced Vibration
  • 6.4 Small Signal Equivalent Circuit of Resonators
  • 6.5 Rayleigh-Ritz Method
  • 6.6 Resonant Gyroscope
  • 6.7 Tuning Fork Gyroscope
  • Problems
  • Notes
  • 7 Microfluidics and Electrokinetics
  • 7.1 Viscous Flow
  • 7.2 Flow in a Cylindrical Pipe
  • 7.3 Electrical Double Layer
  • 7.4 Electro-osmotic Flow
  • 7.5 Electrowetting
  • 7.6 Electrowetting Dynamics
  • 7.7 Dielectrophoresis
  • Problems
  • Notes
  • 8 Thermal Devices
  • 8.1 Steady-state Heat Equation
  • 8.2 Thermal Resistance
  • 8.3 Platinum Resistors
  • 8.4 Flow Measurement Based on Thermal Sensors