Time Series Analysis
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2016.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright
- Table of Contents
- PREFACE
- ACKNOWLEDGMENTS
- ACRONYMS
- ABOUT THE COMPANION WEBSITE
- CHAPTER 1: INTRODUCTION
- 1.1 TIME SERIES DATA
- 1.2 RANDOM VARIABLES AND STATISTICAL MODELING
- 1.3 DISCRETE-TIME MODELS
- 1.4 SERIAL DEPENDENCE
- 1.5 NONSTATIONARITY
- 1.6 WHITENESS TESTING
- 1.7 PARAMETRIC AND NONPARAMETRIC MODELING
- 1.8 FORECASTING
- 1.9 TIME SERIES MODELING
- 1.10 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 2: LINEAR PROCESSES
- 2.1 DEFINITION
- 2.2 STATIONARITY
- 2.3 INVERTIBILITY
- 2.4 CAUSALITY
- 2.5 REPRESENTATIONS OF LINEAR PROCESSES
- 2.6 WEAK AND STRONG DEPENDENCE
- 2.7 ARMA MODELS
- 2.8 AUTOCOVARIANCE FUNCTION
- 2.9 ACF AND PARTIAL ACF FUNCTIONS
- 2.10 ARFIMA PROCESSES
- 2.11 FRACTIONAL GAUSSIAN NOISE
- 2.12 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 3: STATE SPACE MODELS
- 3.1 INTRODUCTION
- 3.2 LINEAR DYNAMICAL SYSTEMS
- 3.3 STATE SPACE MODELING OF LINEAR PROCESSES
- 3.4 STATE ESTIMATION
- 3.5 EXOGENOUS VARIABLES
- 3.6 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 4: SPECTRAL ANALYSIS
- 4.1 TIME AND FREQUENCY DOMAINS
- 4.2 LINEAR FILTERS
- 4.3 SPECTRAL DENSITY
- 4.4 PERIODOGRAM
- 4.5 SMOOTHED PERIODOGRAM
- 4.6 EXAMPLES
- 4.7 WAVELETS
- 4.8 SPECTRAL REPRESENTATION
- 4.9 TIME-VARYING SPECTRUM
- 4.10 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 5: ESTIMATION METHODS
- 5.1 MODEL BUILDING
- 5.2 PARSIMONY
- 5.3 AKAIKE AND SCHWARTZ INFORMATION CRITERIA
- 5.4 ESTIMATION OF THE MEAN
- 5.5 ESTIMATION OF AUTOCOVARIANCES
- 5.6 MOMENT ESTIMATION
- 5.7 MAXIMUM-LIKELIHOOD ESTIMATION
- 5.8 WHITTLE ESTIMATION
- 5.9 STATE SPACE ESTIMATION
- 5.10 ESTIMATION OF LONG-MEMORY PROCESSES
- 5.11 NUMERICAL EXPERIMENTS
- 5.12 BAYESIAN ESTIMATION
- 5.13 STATISTICAL INFERENCE
- 5.14 ILLUSTRATIONS
- 5.15 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 6: NONLINEAR TIME SERIES
- 6.1 INTRODUCTION
- 6.2 TESTING FOR LINEARITY
- 6.3 HETEROSKEDASTIC DATA
- 6.4 ARCH MODELS
- 6.5 GARCH MODELS
- 6.6 ARFIMA-GARCH MODELS
- 6.7 ARCH(∞) MODELS
- 6.8 APARCH MODELS
- 6.9 STOCHASTIC VOLATILITY
- 6.10 NUMERICAL EXPERIMENTS
- 6.11 DATA APPLICATIONS
- 6.12 VALUE AT RISK
- 6.13 AUTOCORRELATION OF SQUARES
- 6.14 THRESHOLD AUTOREGRESSIVE MODELS
- 6.15 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 7: PREDICTION
- 7.1 OPTIMAL PREDICTION
- 7.2 ONE-STEP AHEAD PREDICTORS
- 7.3 MULTISTEP AHEAD PREDICTORS
- 7.4 HETEROSKEDASTIC MODELS
- 7.5 PREDICTION BANDS
- 7.6 DATA APPLICATION
- 7.7 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 8: NONSTATIONARY PROCESSES
- 8.1 INTRODUCTION
- 8.2 UNIT ROOT TESTING
- 8.3 ARIMA PROCESSES
- 8.4 LOCALLY STATIONARY PROCESSES
- 8.5 STRUCTURAL BREAKS
- 8.6 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 9: SEASONALITY
- 9.1 SARIMA MODELS
- 9.2 SARFIMA MODELS
- 9.3 GARMA MODELS
- 9.4 CALCULATION OF THE ASYMPTOTIC VARIANCE
- 9.5 AUTOCOVARIANCE FUNCTION
- 9.6 MONTE CARLO STUDIES
- 9.7 ILLUSTRATION