Electrical Conduction in Graphene and Nanotubes
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2013.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Electrical Conduction in Graphene and Nanotubes
- Contents
- Preface
- Physical Constants, Units, Mathematical Signs and Symbols
- 1 Introduction
- 1.1 Carbon Nanotubes
- 1.2 Theoretical Background
- 1.2.1 Metals and Conduction Electrons
- 1.2.2 Quantum Mechanics
- 1.2.3 Heisenberg Uncertainty Principle
- 1.2.4 Bosons and Fermions
- 1.2.5 Fermi and Bose Distribution Functions
- 1.2.6 Composite Particles
- 1.2.7 Quasifree Electron Model
- 1.2.8 "Electrons" and "Holes"
- 1.2.9 The Gate Field Effect
- 1.3 Book Layout
- 1.4 Suggestions for Readers
- 1.4.1 Second Quantization
- 1.4.2 Semiclassical Theory of Electron Dynamics
- 1.4.3 Fermi Surface
- References
- 2 Kinetic Theory and the Boltzmann Equation
- 2.1 Diffusion and Thermal Conduction
- 2.2 Collision Rate: Mean Free Path
- 2.3 Electrical Conductivity and Matthiessen's Rule
- 2.4 The Hall Effect: "Electrons" and "Holes"
- 2.5 The Boltzmann Equation
- 2.6 The Current Relaxation Rate
- References
- 3 Bloch Electron Dynamics
- 3.1 Bloch Theorem in One Dimension
- 3.2 The Kronig-Penney Model
- 3.3 Bloch Theorem in Three Dimensions
- 3.4 Fermi Liquid Model
- 3.5 The Fermi Surface
- 3.6 Heat Capacity and Density of States
- 3.7 The Density of State in the Momentum Space
- 3.8 Equations of Motion for a Bloch Electron
- References
- 4 Phonons and Electron-Phonon Interaction
- 4.1 Phonons and Lattice Dynamics
- 4.2 Van Hove Singularities
- 4.2.1 Particles on a Stretched String (Coupled Harmonic Oscillators)
- 4.2.2 Low-Frequency Phonons
- 4.2.3 Discussion
- 4.3 Electron-Phonon Interaction
- 4.4 Phonon-Exchange Attraction
- References
- 5 Electrical Conductivity of Multiwalled Nanotubes
- 5.1 Introduction
- 5.2 Graphene
- 5.3 Lattice Stability and Reflection Symmetry
- 5.4 Single-Wall Nanotubes
- 5.5 Multiwalled Nanotubes
- 5.6 Summary and Discussion
- References
- 6 Semiconducting SWNTs
- 6.1 Introduction
- 6.2 Single-Wall Nanotubes
- 6.3 Summary and Discussion
- References
- 7 Superconductivity
- 7.1 Basic Properties of a Superconductor
- 7.1.1 Zero Resistance
- 7.1.2 Meissner Effect
- 7.1.3 Ring Supercurrent and Flux Quantization
- 7.1.4 Josephson Effects
- 7.1.5 Energy Gap
- 7.1.6 Sharp Phase Change
- 7.2 Occurrence of a Superconductor
- 7.2.1 Elemental Superconductors
- 7.2.2 Compound Superconductors
- 7.2.3 High-Tc Superconductors
- 7.3 Theoretical Survey
- 7.3.1 The Cause of Superconductivity
- 7.3.2 The Bardeen-Cooper-Schrieffer Theory
- 7.3.3 Quantum Statistical Theory
- 7.4 Quantum Statistical Theory of Superconductivity
- 7.4.1 The Generalized BCS Hamiltonian
- 7.5 The Cooper Pair Problem
- 7.6 Moving Pairons
- 7.7 The BCS Ground State
- 7.7.1 The Reduced Generalized BCS Hamiltonian
- 7.7.2 The Ground State
- 7.8 Remarks
- 7.8.1 The Nature of the Reduced Hamiltonian
- 7.8.2 Binding Energy per Pairon
- 7.8.3 The Energy Gap