Cargando…

Electrical Conduction in Graphene and Nanotubes

Detalles Bibliográficos
Autor principal: Fujita, Shigeji
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2013.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Electrical Conduction in Graphene and Nanotubes
  • Contents
  • Preface
  • Physical Constants, Units, Mathematical Signs and Symbols
  • 1 Introduction
  • 1.1 Carbon Nanotubes
  • 1.2 Theoretical Background
  • 1.2.1 Metals and Conduction Electrons
  • 1.2.2 Quantum Mechanics
  • 1.2.3 Heisenberg Uncertainty Principle
  • 1.2.4 Bosons and Fermions
  • 1.2.5 Fermi and Bose Distribution Functions
  • 1.2.6 Composite Particles
  • 1.2.7 Quasifree Electron Model
  • 1.2.8 "Electrons" and "Holes"
  • 1.2.9 The Gate Field Effect
  • 1.3 Book Layout
  • 1.4 Suggestions for Readers
  • 1.4.1 Second Quantization
  • 1.4.2 Semiclassical Theory of Electron Dynamics
  • 1.4.3 Fermi Surface
  • References
  • 2 Kinetic Theory and the Boltzmann Equation
  • 2.1 Diffusion and Thermal Conduction
  • 2.2 Collision Rate: Mean Free Path
  • 2.3 Electrical Conductivity and Matthiessen's Rule
  • 2.4 The Hall Effect: "Electrons" and "Holes"
  • 2.5 The Boltzmann Equation
  • 2.6 The Current Relaxation Rate
  • References
  • 3 Bloch Electron Dynamics
  • 3.1 Bloch Theorem in One Dimension
  • 3.2 The Kronig-Penney Model
  • 3.3 Bloch Theorem in Three Dimensions
  • 3.4 Fermi Liquid Model
  • 3.5 The Fermi Surface
  • 3.6 Heat Capacity and Density of States
  • 3.7 The Density of State in the Momentum Space
  • 3.8 Equations of Motion for a Bloch Electron
  • References
  • 4 Phonons and Electron-Phonon Interaction
  • 4.1 Phonons and Lattice Dynamics
  • 4.2 Van Hove Singularities
  • 4.2.1 Particles on a Stretched String (Coupled Harmonic Oscillators)
  • 4.2.2 Low-Frequency Phonons
  • 4.2.3 Discussion
  • 4.3 Electron-Phonon Interaction
  • 4.4 Phonon-Exchange Attraction
  • References
  • 5 Electrical Conductivity of Multiwalled Nanotubes
  • 5.1 Introduction
  • 5.2 Graphene
  • 5.3 Lattice Stability and Reflection Symmetry
  • 5.4 Single-Wall Nanotubes
  • 5.5 Multiwalled Nanotubes
  • 5.6 Summary and Discussion
  • References
  • 6 Semiconducting SWNTs
  • 6.1 Introduction
  • 6.2 Single-Wall Nanotubes
  • 6.3 Summary and Discussion
  • References
  • 7 Superconductivity
  • 7.1 Basic Properties of a Superconductor
  • 7.1.1 Zero Resistance
  • 7.1.2 Meissner Effect
  • 7.1.3 Ring Supercurrent and Flux Quantization
  • 7.1.4 Josephson Effects
  • 7.1.5 Energy Gap
  • 7.1.6 Sharp Phase Change
  • 7.2 Occurrence of a Superconductor
  • 7.2.1 Elemental Superconductors
  • 7.2.2 Compound Superconductors
  • 7.2.3 High-Tc Superconductors
  • 7.3 Theoretical Survey
  • 7.3.1 The Cause of Superconductivity
  • 7.3.2 The Bardeen-Cooper-Schrieffer Theory
  • 7.3.3 Quantum Statistical Theory
  • 7.4 Quantum Statistical Theory of Superconductivity
  • 7.4.1 The Generalized BCS Hamiltonian
  • 7.5 The Cooper Pair Problem
  • 7.6 Moving Pairons
  • 7.7 The BCS Ground State
  • 7.7.1 The Reduced Generalized BCS Hamiltonian
  • 7.7.2 The Ground State
  • 7.8 Remarks
  • 7.8.1 The Nature of the Reduced Hamiltonian
  • 7.8.2 Binding Energy per Pairon
  • 7.8.3 The Energy Gap