Cargando…

Principles of Mathematics A Primer.

Detalles Bibliográficos
Autor principal: Lepetic, Vladimir
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2016.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Dedication
  • Contents
  • Preface
  • Chapter 1 Set Theory
  • 1.1 Introduction
  • 1.2 Set Theory
  • Definitions, Notation, and Terminology
  • What is a Set?
  • 1.3 Sets Given by a Defining Property
  • 1.4 The Algebra of Sets
  • 1.5 The Power Set
  • 1.6 The Cartesian Product
  • 1.7 The Sets N, Z, and Q
  • 1.8 The Set R
  • Real Numbers I
  • 1.9 A Short Musing on Transfinite Arithmetic
  • 1.10 The Set R
  • Real Numbers II
  • 1.11 Supplementary Problems
  • Chapter 2 Logic
  • 2.1 Introduction
  • 2.2 Propositional Calculus
  • 2.3 Arguments I
  • 2.4 Arguments II
  • 2.5 A Short Revisit to Set Theory
  • 2.6 Boolean Algebra
  • 2.7 Supplementary Problems
  • Chapter 3 Proofs
  • 3.1 Introduction
  • 3.2 Direct Proof
  • 3.3 Indirect Proof
  • 3.4 Mathematical Induction
  • 3.5 Supplementary Problems
  • Chapter 4 Functions
  • 4.1 Introduction
  • 4.2 Relations
  • 4.3 Functions
  • 4.4 Supplementary Problems
  • Chapter 5 Group Theory
  • 5.1 Introduction
  • 5.2 Fundamental Concepts of Group Theory
  • 5.3 Subgroups
  • 5.4 Cyclic Groups
  • 5.5 Homomorphisms and Isomorphisms
  • 5.6 Normal Subgroups
  • 5.7 Centralizer, Normalizer, Stabilizer
  • 5.8 Quotient Group
  • 5.9 The Isomorphism Theorems
  • 5.10 Direct Product of Groups
  • 5.11 Supplementary Problems
  • Chapter 6 Linear Algebra
  • 6.1 Introduction
  • 6.2 Vector Space
  • 6.3 Linear Dependence and Independence
  • 6.4 Basis and Dimension of a Vector Space
  • 6.5 Subspaces
  • 6.6 Linear Transformations
  • Linear Operators
  • 6.7 Isomorphism of Linear Spaces
  • 6.8 Linear Transformations and Matrices
  • 6.9 Linear Space M mn
  • 6.10 Matrix Multiplication
  • 6.11 Some More Special Matrices. General Linear Group
  • 6.12 Rank of a Matrix
  • 6.13 Determinants
  • 6.14 The Inverse and the Rank of a Matrix Revisited
  • 6.15 More on Linear Operators
  • 6.16 Systems of Linear Equations I
  • 6.17 Systems of Linear Equations II
  • 6.18 The Basics of Eigenvalue and Eigenvector Theory
  • 6.19 Supplementary Problems
  • Index
  • EULA