Multivariate Time Series Analysis With R and Financial Applications.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2013.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Multivariate Time Series Analysis: With R and Financial Applications
- Copyright
- Contents
- Preface
- Acknowledgements
- 1 Multivariate Linear Time Series
- 1.1 Introduction
- 1.2 Some Basic Concepts
- 1.2.1 Stationarity
- 1.2.2 Linearity
- 1.2.3 Invertibility
- 1.3 Cross-Covariance and Correlation Matrices
- 1.4 Sample CCM
- 1.5 Testing Zero Cross-Correlations
- 1.6 Forecasting
- 1.7 Model Representations
- 1.8 Outline of the Book
- 1.9 Software
- Exercises
- 2 Stationary Vector Autoregressive Time Series
- 2.1 Introduction
- 2.2 VAR(1) Models
- 2.2.1 Model Structure and Granger Causality
- 2.2.2 Relation to Transfer Function Model
- 2.2.3 Stationarity Condition
- 2.2.4 Invertibility
- 2.2.5 Moment Equations
- 2.2.6 Implied Models for the Components
- 2.2.7 Moving-Average Representation
- 2.3 VAR(2) Models
- 2.3.1 Stationarity Condition
- 2.3.2 Moment Equations
- 2.3.3 Implied Marginal Component Models
- 2.3.4 Moving-Average Representation
- 2.4 VAR(p) Models
- 2.4.1 A VAR(1) Representation
- 2.4.2 Stationarity Condition
- 2.4.3 Moment Equations
- 2.4.4 Implied Component Models
- 2.4.5 Moving-Average Representation
- 2.5 Estimation
- 2.5.1 Least-Squares Methods
- 2.5.2 Maximum Likelihood Estimate
- 2.5.3 Limiting Properties of LS Estimate
- 2.5.4 Bayesian Estimation
- 2.6 Order Selection
- 2.6.1 Sequential Likelihood Ratio Tests
- 2.6.2 Information Criteria
- 2.7 Model Checking
- 2.7.1 Residual Cross-Correlations
- 2.7.2 Multivariate Portmanteau Statistics
- 2.7.3 Model Simplification
- 2.8 Linear Constraints
- 2.9 Forecasting
- 2.9.1 Forecasts of a Given Model
- 2.9.2 Forecasts of an Estimated Model
- 2.10 Impulse Response Functions
- 2.10.1 Orthogonal Innovations
- 2.11 Forecast ErrorVariance Decomposition
- 2.12 Proofs
- Exercises
- References
- 3 Vector Autoregressive Moving-Average Time Series
- 3.1 Vector MA Models
- 3.1.1 VMA(1) Model
- 3.1.2 Properties of VMA(q) Models
- 3.2 Specifying VMA Order
- 3.3 Estimation of VMA Models
- 3.3.1 Conditional Likelihood Estimation
- 3.3.2 Exact Likelihood Estimation
- 3.3.3 Initial Parameter Estimation
- 3.4 Forecasting of VMA Models
- 3.5 VARMA Models
- 3.5.1 Identifiability
- 3.5.2 VARMA(1,1) Models
- 3.5.3 Some Properties of VARMA Models
- 3.6 Implications of VARMA Models
- 3.6.1 Granger Causality
- 3.6.2 Impulse Response Functions
- 3.7 Linear Transforms of VARMA Processes
- 3.8 Temporal Aggregation of VARMA Processes
- 3.9 Likelihood Function of a VARMA Model
- 3.9.1 Conditional Likelihood Function
- 3.9.2 Exact Likelihood Function
- 3.9.3 Interpreting the Likelihood Function
- 3.9.4 Computation of Likelihood Function
- 3.10 Innovations Approach to Exact Likelihood Function
- 3.10.1 Block Cholesky Decomposition
- 3.11 Asymptotic Distribution of Maximum Likelihood Estimates
- 3.11.1 Linear Parameter Constraints