Cargando…

Statistical Analysis of Geographical Data An Introduction.

Detalles Bibliográficos
Autor principal: Dadson, Simon James
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2017.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title Page
  • Table of Contents
  • Preface
  • 1 Dealing with data
  • 1.1 The role of statistics in geography
  • 1.2 About this book
  • 1.3 Data and measurement error
  • Exercises
  • 2 Collecting and summarizing data
  • 2.1 Sampling methods
  • 2.2 Graphical summaries
  • 2.3 Summarizing data numerically
  • Exercises
  • 3 Probability and sampling distributions
  • 3.1 Probability
  • 3.2 Probability and the normal distribution: z-scores
  • 3.3 Sampling distributions and the central limit theorem
  • Exercises
  • 4 Estimating parameters with confidence intervals
  • 4.1 Confidence intervals on the mean of a normal distribution: the basics
  • 4.2 Confidence intervals in practice: the t-distribution
  • 4.3 Sample size
  • 4.4 Confidence intervals for a proportion
  • Exercises
  • 5 Comparing datasets
  • 5.1 Hypothesis testing with one sample: general principles
  • 5.2 Comparing means from small samples: one-sample t-test
  • 5.3 Comparing proportions for one sample
  • 5.4 Comparing two samples
  • 5.5 Non-parametric hypothesis testing
  • Exercises
  • 6 Comparing distributions
  • 6.1 Chi-squared test with one sample
  • 6.2 Chi-squared test for two samples
  • Exercises
  • 7 Analysis of variance
  • 7.1 One-way analysis of variance
  • 7.2 Assumptions and diagnostics
  • 7.3 Multiple comparison tests after analysis of variance
  • 7.4 Non-parametric methods in the analysis of variance
  • 7.5 Summary and further applications
  • Exercises
  • 8 Correlation
  • 8.1 Correlation analysis
  • 8.2 Pearson's product-moment correlation coefficient
  • 8.3 Significance tests of correlation coefficient
  • 8.4 Spearman's rank correlation coefficient
  • 8.5 Correlation and causality
  • Exercises
  • 9 Linear regression
  • 9.1 Least-squares linear regression
  • 9.2 Scatter plots
  • 9.3 Choosing the line of best fit: the 'least-squares' procedure
  • 9.4 Analysis of residuals
  • 9.5 Assumptions and caveats with regression
  • 9.6 Is the regression significant?
  • 9.7 Coefficient of determination
  • 9.8 Confidence intervals and hypothesis tests concerning regression parameters
  • 9.9 Reduced major axis regression
  • 9.10 Summary
  • Exercises
  • 10 Spatial Statistics
  • 10.1 Spatial Data
  • 10.2 Summarizing Spatial Data
  • 10.3 Identifying Clusters
  • 10.4 Interpolation and Plotting Contour Maps
  • 10.5 Spatial Relationships
  • Exercises
  • 11 Time series analysis
  • 11.1 Time series in geographical research
  • 11.2 Analysing time series
  • 11.3 Summary
  • Exercises
  • Appendix A: Introduction to the R package
  • A.1 Obtaining R
  • A.2 Simple calculations
  • A.3 Vectors
  • A.4 Basic statistics
  • A.5 Plotting data
  • A.6 Multiple figures
  • A.7 Reading and writing data
  • A.8 Summary
  • Appendix B: Statistical tables
  • References
  • Index
  • End User License Agreement