Micromechanics with Mathematica
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2016.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- About the Companion Website
- Chapter 1 Coordinate Transformation and Tensors
- 1.1 Index Notation
- 1.1.1 Some Examples of Index Notation in 3-D
- 1.1.2 Mathematica Implementation
- 1.1.3 Kronecker Delta
- 1.1.4 Permutation Symbols
- 1.1.5 Product of Matrices
- 1.2 Coordinate Transformations (Cartesian Tensors)
- 1.3 Definition of Tensors
- 1.3.1 Tensor of Rank 0 (Scalar)
- 1.3.2 Tensor of Rank 1 (Vector)
- 1.3.3 Tensor of Rank 2
- 1.3.4 Tensor of Rank 3
- 1.3.5 Tensor of Rank 4
- 1.3.6 Differentiation
- 1.3.7 Differentiation of Cartesian Tensors
- 1.4 Invariance of Tensor Equations
- 1.5 Quotient Rule
- 1.6 Exercises
- References
- Chapter 2 Field Equations
- 2.1 Concept of Stress
- 2.1.1 Properties of Stress
- 2.1.2 (Stress) Boundary Conditions
- 2.1.3 Principal Stresses
- 2.1.4 Stress Deviator
- 2.1.5 Mohr's Circle
- 2.2 Strain
- 2.2.1 Shear Deformation
- 2.3 Compatibility Condition
- 2.4 Constitutive Relation, Isotropy, Anisotropy
- 2.4.1 Isotropy
- 2.4.2 Elastic Modulus
- 2.4.3 Orthotropy
- 2.4.4 2-D Orthotropic Materials
- 2.4.5 Transverse Isotropy
- 2.5 Constitutive Relation for Fluids
- 2.5.1 Thermal Effect
- 2.6 Derivation of Field Equations
- 2.6.1 Divergence Theorem (Gauss Theorem)
- 2.6.2 Material Derivative
- 2.6.3 Equation of Continuity
- 2.6.4 Equation of Motion
- 2.6.5 Equation of Energy
- 2.6.6 Isotropic Solids
- 2.6.7 Isotropic Fluids
- 2.6.8 Thermal Effects
- 2.7 General Coordinate System
- 2.7.1 Introduction to Tensor Analysis
- 2.7.2 Definition of Tensors in Curvilinear Systems
- 2.7.3 Metric Tensor10, gij
- 2.7.4 Covariant Derivatives
- 2.7.5 Examples
- 2.7.6 Vector Analysis
- 2.8 Exercises
- References
- Chapter 3 Inclusions in Infinite Media
- 3.1 Eshelby's Solution for an Ellipsoidal Inclusion Problem
- 3.1.1 Eigenstrain Problem
- 3.1.2 Eshelby Tensors for an Ellipsoidal Inclusion
- 3.1.3 Inhomogeneity (Inclusion) Problem
- 3.2 Multilayered Inclusions
- 3.2.1 Background
- 3.2.2 Implementation of Index Manipulation in Mathematica
- 3.2.3 General Formulation
- 3.2.4 Exact Solution for Two-Phase Materials
- 3.2.5 Exact Solution for Three-Phase Materials
- 3.2.6 Exact Solution for Four-Phase Materials
- 3.2.7 Exact Solution for 2-D Multiphase Materials
- 3.3 Thermal Stress
- 3.3.1 Thermal Stress Due to Heat Source
- 3.3.2 Thermal Stress Due to Heat Flow
- 3.4 Airy's Stress Function Approach
- 3.4.1 Airy's Stress Function
- 3.4.2 Mathematica Programming of Complex Variables
- 3.4.3 Multiphase Inclusion Problems Using Airy's Stress Function
- 3.5 Effective Properties
- 3.5.1 Upper and Lower Bounds of Effective Properties
- 3.5.2 Self-Consistent Approximation
- 3.5.3 Source Code for micromech.m
- 3.6 Exercises
- References
- Chapter 4 Inclusions in Finite Matrix
- 4.1 General Approaches for Numerically Solving Boundary Value Problems