Cargando…

Micromechanics with Mathematica

Detalles Bibliográficos
Autor principal: Nomura, Seiichi
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2016.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347024654
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 230209s2016 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d OCLCQ  |d EBLCP  |d OCLCO  |d OCLCQ  |d OCLCL  |d OCLCQ 
020 |a 9781118385692 
020 |a 1118385691 
035 |a (OCoLC)1347024654 
082 0 4 |a 620.1  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Nomura, Seiichi. 
245 1 0 |a Micromechanics with Mathematica  |h [electronic resource]. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2016. 
300 |a 1 online resource (290 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Companion Website -- Chapter 1 Coordinate Transformation and Tensors -- 1.1 Index Notation -- 1.1.1 Some Examples of Index Notation in 3-D -- 1.1.2 Mathematica Implementation -- 1.1.3 Kronecker Delta -- 1.1.4 Permutation Symbols -- 1.1.5 Product of Matrices -- 1.2 Coordinate Transformations (Cartesian Tensors) -- 1.3 Definition of Tensors -- 1.3.1 Tensor of Rank 0 (Scalar) -- 1.3.2 Tensor of Rank 1 (Vector) -- 1.3.3 Tensor of Rank 2 -- 1.3.4 Tensor of Rank 3 -- 1.3.5 Tensor of Rank 4 -- 1.3.6 Differentiation 
505 8 |a 1.3.7 Differentiation of Cartesian Tensors -- 1.4 Invariance of Tensor Equations -- 1.5 Quotient Rule -- 1.6 Exercises -- References -- Chapter 2 Field Equations -- 2.1 Concept of Stress -- 2.1.1 Properties of Stress -- 2.1.2 (Stress) Boundary Conditions -- 2.1.3 Principal Stresses -- 2.1.4 Stress Deviator -- 2.1.5 Mohr's Circle -- 2.2 Strain -- 2.2.1 Shear Deformation -- 2.3 Compatibility Condition -- 2.4 Constitutive Relation, Isotropy, Anisotropy -- 2.4.1 Isotropy -- 2.4.2 Elastic Modulus -- 2.4.3 Orthotropy -- 2.4.4 2-D Orthotropic Materials -- 2.4.5 Transverse Isotropy 
505 8 |a 2.5 Constitutive Relation for Fluids -- 2.5.1 Thermal Effect -- 2.6 Derivation of Field Equations -- 2.6.1 Divergence Theorem (Gauss Theorem) -- 2.6.2 Material Derivative -- 2.6.3 Equation of Continuity -- 2.6.4 Equation of Motion -- 2.6.5 Equation of Energy -- 2.6.6 Isotropic Solids -- 2.6.7 Isotropic Fluids -- 2.6.8 Thermal Effects -- 2.7 General Coordinate System -- 2.7.1 Introduction to Tensor Analysis -- 2.7.2 Definition of Tensors in Curvilinear Systems -- 2.7.3 Metric Tensor10, gij -- 2.7.4 Covariant Derivatives -- 2.7.5 Examples -- 2.7.6 Vector Analysis -- 2.8 Exercises -- References 
505 8 |a Chapter 3 Inclusions in Infinite Media -- 3.1 Eshelby's Solution for an Ellipsoidal Inclusion Problem -- 3.1.1 Eigenstrain Problem -- 3.1.2 Eshelby Tensors for an Ellipsoidal Inclusion -- 3.1.3 Inhomogeneity (Inclusion) Problem -- 3.2 Multilayered Inclusions -- 3.2.1 Background -- 3.2.2 Implementation of Index Manipulation in Mathematica -- 3.2.3 General Formulation -- 3.2.4 Exact Solution for Two-Phase Materials -- 3.2.5 Exact Solution for Three-Phase Materials -- 3.2.6 Exact Solution for Four-Phase Materials -- 3.2.7 Exact Solution for 2-D Multiphase Materials -- 3.3 Thermal Stress 
505 8 |a 3.3.1 Thermal Stress Due to Heat Source -- 3.3.2 Thermal Stress Due to Heat Flow -- 3.4 Airy's Stress Function Approach -- 3.4.1 Airy's Stress Function -- 3.4.2 Mathematica Programming of Complex Variables -- 3.4.3 Multiphase Inclusion Problems Using Airy's Stress Function -- 3.5 Effective Properties -- 3.5.1 Upper and Lower Bounds of Effective Properties -- 3.5.2 Self-Consistent Approximation -- 3.5.3 Source Code for micromech.m -- 3.6 Exercises -- References -- Chapter 4 Inclusions in Finite Matrix -- 4.1 General Approaches for Numerically Solving Boundary Value Problems 
500 |a 4.1.1 Method of Weighted Residuals 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
655 0 |a Electronic books. 
758 |i has work:  |a Micromechanics with Mathematica (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH3R9bgttwhgrvFj4qpByd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Nomura, Seiichi  |t Micromechanics with Mathematica  |d Newark : John Wiley & Sons, Incorporated,c2016  |z 9781118384923 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7103599  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7103599 
994 |a 92  |b IZTAP