|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1347024654 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230209s2016 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d OCLCQ
|d EBLCP
|d OCLCO
|d OCLCQ
|d OCLCL
|d OCLCQ
|
020 |
|
|
|a 9781118385692
|
020 |
|
|
|a 1118385691
|
035 |
|
|
|a (OCoLC)1347024654
|
082 |
0 |
4 |
|a 620.1
|q OCoLC
|2 23/eng/20230216
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Nomura, Seiichi.
|
245 |
1 |
0 |
|a Micromechanics with Mathematica
|h [electronic resource].
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2016.
|
300 |
|
|
|a 1 online resource (290 p.).
|
490 |
1 |
|
|a New York Academy of Sciences Ser.
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Companion Website -- Chapter 1 Coordinate Transformation and Tensors -- 1.1 Index Notation -- 1.1.1 Some Examples of Index Notation in 3-D -- 1.1.2 Mathematica Implementation -- 1.1.3 Kronecker Delta -- 1.1.4 Permutation Symbols -- 1.1.5 Product of Matrices -- 1.2 Coordinate Transformations (Cartesian Tensors) -- 1.3 Definition of Tensors -- 1.3.1 Tensor of Rank 0 (Scalar) -- 1.3.2 Tensor of Rank 1 (Vector) -- 1.3.3 Tensor of Rank 2 -- 1.3.4 Tensor of Rank 3 -- 1.3.5 Tensor of Rank 4 -- 1.3.6 Differentiation
|
505 |
8 |
|
|a 1.3.7 Differentiation of Cartesian Tensors -- 1.4 Invariance of Tensor Equations -- 1.5 Quotient Rule -- 1.6 Exercises -- References -- Chapter 2 Field Equations -- 2.1 Concept of Stress -- 2.1.1 Properties of Stress -- 2.1.2 (Stress) Boundary Conditions -- 2.1.3 Principal Stresses -- 2.1.4 Stress Deviator -- 2.1.5 Mohr's Circle -- 2.2 Strain -- 2.2.1 Shear Deformation -- 2.3 Compatibility Condition -- 2.4 Constitutive Relation, Isotropy, Anisotropy -- 2.4.1 Isotropy -- 2.4.2 Elastic Modulus -- 2.4.3 Orthotropy -- 2.4.4 2-D Orthotropic Materials -- 2.4.5 Transverse Isotropy
|
505 |
8 |
|
|a 2.5 Constitutive Relation for Fluids -- 2.5.1 Thermal Effect -- 2.6 Derivation of Field Equations -- 2.6.1 Divergence Theorem (Gauss Theorem) -- 2.6.2 Material Derivative -- 2.6.3 Equation of Continuity -- 2.6.4 Equation of Motion -- 2.6.5 Equation of Energy -- 2.6.6 Isotropic Solids -- 2.6.7 Isotropic Fluids -- 2.6.8 Thermal Effects -- 2.7 General Coordinate System -- 2.7.1 Introduction to Tensor Analysis -- 2.7.2 Definition of Tensors in Curvilinear Systems -- 2.7.3 Metric Tensor10, gij -- 2.7.4 Covariant Derivatives -- 2.7.5 Examples -- 2.7.6 Vector Analysis -- 2.8 Exercises -- References
|
505 |
8 |
|
|a Chapter 3 Inclusions in Infinite Media -- 3.1 Eshelby's Solution for an Ellipsoidal Inclusion Problem -- 3.1.1 Eigenstrain Problem -- 3.1.2 Eshelby Tensors for an Ellipsoidal Inclusion -- 3.1.3 Inhomogeneity (Inclusion) Problem -- 3.2 Multilayered Inclusions -- 3.2.1 Background -- 3.2.2 Implementation of Index Manipulation in Mathematica -- 3.2.3 General Formulation -- 3.2.4 Exact Solution for Two-Phase Materials -- 3.2.5 Exact Solution for Three-Phase Materials -- 3.2.6 Exact Solution for Four-Phase Materials -- 3.2.7 Exact Solution for 2-D Multiphase Materials -- 3.3 Thermal Stress
|
505 |
8 |
|
|a 3.3.1 Thermal Stress Due to Heat Source -- 3.3.2 Thermal Stress Due to Heat Flow -- 3.4 Airy's Stress Function Approach -- 3.4.1 Airy's Stress Function -- 3.4.2 Mathematica Programming of Complex Variables -- 3.4.3 Multiphase Inclusion Problems Using Airy's Stress Function -- 3.5 Effective Properties -- 3.5.1 Upper and Lower Bounds of Effective Properties -- 3.5.2 Self-Consistent Approximation -- 3.5.3 Source Code for micromech.m -- 3.6 Exercises -- References -- Chapter 4 Inclusions in Finite Matrix -- 4.1 General Approaches for Numerically Solving Boundary Value Problems
|
500 |
|
|
|a 4.1.1 Method of Weighted Residuals
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
655 |
|
0 |
|a Electronic books.
|
758 |
|
|
|i has work:
|a Micromechanics with Mathematica (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCH3R9bgttwhgrvFj4qpByd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Nomura, Seiichi
|t Micromechanics with Mathematica
|d Newark : John Wiley & Sons, Incorporated,c2016
|z 9781118384923
|
830 |
|
0 |
|a New York Academy of Sciences Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7103599
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7103599
|
994 |
|
|
|a 92
|b IZTAP
|