Cargando…

Spacecraft Dynamics and Control An Introduction.

"Provides the basics of spacecraft orbital dynamics plus attitude dynamics and control, using vectrix notationSpacecraft Dynamics and Control: An Introduction presents the fundamentals of classical control in the context of spacecraft attitude control. This approach is particularly beneficial f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: de Ruiter, Anton H.
Otros Autores: Damaren, Christopher, Forbes, James R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2013.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title Page
  • Copyright
  • Dedication
  • Preface
  • Chapter 1: Kinematics
  • 1.1 Physical Vectors
  • 1.2 Reference Frames and Physical Vector Coordinates
  • 1.3 Rotation Matrices
  • 1.4 Derivatives of Vectors
  • 1.5 Velocity and Acceleration
  • 1.6 More Rigorous Definition of Angular Velocity
  • Notes
  • References
  • Chapter 2: Rigid Body Dynamics
  • 2.1 Dynamics of a Single Particle
  • 2.2 Dynamics of a System of Particles
  • 2.3 Rigid Body Dynamics
  • 2.4 The Inertia Matrix
  • 2.5 Kinetic Energy of a Rigid Body
  • Notes
  • References
  • Chapter 3: The Keplerian Two-Body Problem
  • 3.1 Equations of Motion
  • 3.2 Constants of the Motion
  • 3.3 Shape of a Keplerian Orbit
  • 3.4 Kepler's Laws
  • 3.5 Time of Flight
  • 3.6 Orbital Elements
  • 3.7 Orbital Elements given Position and Velocity
  • 3.8 Position and Velocity given Orbital Elements
  • Notes
  • References
  • Chapter 4: Preliminary Orbit Determination
  • 4.1 Orbit Determination from Three Position Vectors
  • 4.2 Orbit Determination from Three Line-of-Sight Vectors
  • 4.3 Orbit Determination from Two Position Vectors and Time (Lam- bert's Problem)
  • Notes
  • References
  • Chapter 5: Orbital Maneuvers
  • 5.1 Simple Impulsive Maneuvers
  • 5.2 Coplanar Maneuvers
  • 5.3 Plane Change Maneuvers
  • 5.4 Combined Maneuvers
  • 5.5 Rendezvous
  • Notes
  • Reference
  • Chapter 6: Interplanetary Trajectories
  • 6.1 Sphere of Influence
  • 6.2 Interplanetary Hohmann Transfers
  • 6.3 Patched Conics
  • 6.4 Planetary Flyby
  • 6.5 Planetary Capture
  • Notes
  • References
  • Chapter 7: Orbital Perturbations
  • 7.1 Special Perturbations
  • 7.2 General Perturbations
  • 7.3 Gravitational Perturbations due to a Non-Spherical Primary Body
  • 7.4 Effect of J2 on the Orbital Elements
  • 7.5 Special Types of Orbits
  • 7.6 Small Impulse Form of the Gauss Variational Equations
  • 7.7 Derivation of the Remaining Gauss Variational Equations
  • Notes
  • References
  • Chapter 8: Low Thrust Trajectory Analysis and Design
  • 8.1 Problem Formulation
  • 8.2 Coplanar Circle to Circle Transfers
  • 8.3 Plane Change Maneuver
  • Notes
  • References
  • Chapter 9: Spacecraft Formation Flying
  • 9.1 Mathematical Description
  • 9.2 Relative Motion Solutions
  • 9.3 Special Types of Relative Orbits
  • Notes
  • Reference
  • Chapter 10: The Restricted Three-Body Problem
  • 10.1 Formulation
  • 10.2 The Lagrangian Points
  • 10.3 Stability of the Lagrangian Points
  • 10.4 Jacobi's Integral
  • Notes
  • References
  • Chapter 11: Introduction to Spacecraft Attitude Stabilization
  • 11.1 Introduction to Control Systems
  • 11.2 Overview of Attitude Representation and Kinematics
  • 11.3 Overview of Spacecraft Attitude Dynamics
  • Chapter 12: Disturbance Torques on a Spacecraft
  • 12.1 Magnetic Torque
  • 12.2 Solar Radiation Pressure Torque
  • 12.3 Aerodynamic Torque
  • 12.4 Gravity-Gradient Torque
  • Notes
  • Reference
  • Chapter 13: Torque-Free Attitude Motion
  • 13.1 Solution for an Axisymmetric Body
  • 13.2 Physical Interpretation of the Motion