|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1347024027 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230209s1998 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d OCLCQ
|d OCLCO
|d EBLCP
|
066 |
|
|
|c (S
|
020 |
|
|
|a 9781118625620
|
020 |
|
|
|a 1118625625
|
029 |
1 |
|
|a AU@
|b 000073110267
|
035 |
|
|
|a (OCoLC)1347024027
|
082 |
0 |
4 |
|a 519.5/36
|q OCoLC
|2 21/eng/20230216
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Draper, Norman R.
|
245 |
1 |
0 |
|a Applied Regression Analysis
|h [electronic resource].
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 1998.
|
300 |
|
|
|a 1 online resource (738 p.).
|
490 |
1 |
|
|a New York Academy of Sciences Ser. ;
|v v.326
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Contents -- Preface to the Third Edition -- About the Software -- Chapter 0: Basic Prerequisite Knowledge -- 0.1. Distributions : Normal, t, and F -- Normal Distribution -- Gamma Function -- t-distribution -- F-distribution -- 0.2. Confidence Intervals (or Bands) and T-tests -- 0.3. Elements of Matrix Algebra -- Matrix, Vector, Scalar -- Equality -- Sum and Difference -- Transpose -- Symmetry -- Multiplication -- Special Matrices and Vectors -- Orthogonality -- Inverse Matrix -- Obtaining an Inverse -- Determinants -- Common Factors
|
505 |
8 |
|
|a Chapter 1: Fitting a Straight Line by Least Squares -- 1.0. Introduction: the Need for Statistical Analysis -- 1.1. Straight Line Relationship Between Two Variables -- 1.2. Linear Regression: Fitting a Straight Line by Least Squares -- Meaning of Linear Model -- Least Squares Estimation -- Pocket-calculator Form -- Calculations for the Steam Data -- Centering the Data -- 1.3. The Analysis of Variance -- Sums of Squares -- Degrees of Freedom (df) -- Analysis of Variance Table -- Steam Data Calculations -- Skeleton Analysis of Variance Ta Ble -- R2 Statistic
|
505 |
8 |
|
|a 1.4. Confidence Intervals and Tests for ß0 and ß1 -- Standard Deviation of the Slope B1 -- Confidence Interval for ß1 -- Confidence Interval for ß1 -- Test for Ho: ß1 = ß10 Versus H1: ß1 ≠ ß10 -- Reject or Do Not Reject -- Confidence Interval Represents a Set of Tests -- Standard Deviation of the Intercept -- Confidence Interval for ß0 -- 1.5. F-test for Significance of Regression -- P-values for F-statistics -- F = T2 -- P-values for T-statistics -- 1.6. the Correlation Between X and Y -- Correlation and Regression -- Rxy and R Connections -- Testing a Single Correlation
|
505 |
8 |
|
|a Adding (or Dropping) X's Can Affect Maximum R2 -- Approximate Repeats -- Generic Pure Error Situations Illustrated Via Straight Line Fits -- 2.2. Testing Homogeneity of Pure Error -- Bartlett's Test -- Bartlett's Test Modified for Kurtosis -- Levene's Test Using Means -- Levene's Test Using Medians -- Some Cautionary Remarks -- A Second Example -- 2.3. Examining Residuals: the Basic Plots -- How Should the Residuals Behave? -- 2.4. Non-normality Checks on Residuals -- Normal Plot of Residuals -- 2.5. Checks for Time Effects, Nonconstant Variance, Need for Transformation, and Curvature
|
500 |
|
|
|a Three Questions and Answers
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
655 |
|
0 |
|a Electronic books.
|
776 |
0 |
8 |
|i Print version:
|a Draper, Norman R.
|t Applied Regression Analysis
|d Newark : John Wiley & Sons, Incorporated,c1998
|z 9780471170822
|
830 |
|
0 |
|a New York Academy of Sciences Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7103889
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 1.7. Summary of the Straight Line Fit Computations -- Pocket-calculator Computations -- 1.8. Historical Remarks -- Appendix 1 A. Steam Plant Data -- Exercises -- Chapter 2: Checking the Straight Line Fit -- 2.1. Lack of Fit and Pure Error -- General Discussion of Variance and Bias -- How Big Is σ2-- Genuine Repeats Are Needed -- Calculation of Pure Error and Lack of Fit Mean Squares -- Special Formula When Nj = 2 -- Split of the Residual ss -- Effect of Repeat Runs on R2 -- Looking at the Data and Fitted Model -- Pure Error in the Many Predictors Case
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7103889
|
994 |
|
|
|a 92
|b IZTAP
|