Cargando…

Applied Regression Analysis

Detalles Bibliográficos
Autor principal: Draper, Norman R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 1998.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347024027
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 230209s1998 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d OCLCQ  |d OCLCO  |d EBLCP 
066 |c (S 
020 |a 9781118625620 
020 |a 1118625625 
029 1 |a AU@  |b 000073110267 
035 |a (OCoLC)1347024027 
082 0 4 |a 519.5/36  |q OCoLC  |2 21/eng/20230216 
049 |a UAMI 
100 1 |a Draper, Norman R. 
245 1 0 |a Applied Regression Analysis  |h [electronic resource]. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 1998. 
300 |a 1 online resource (738 p.). 
490 1 |a New York Academy of Sciences Ser. ;  |v v.326 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Preface to the Third Edition -- About the Software -- Chapter 0: Basic Prerequisite Knowledge -- 0.1. Distributions : Normal, t, and F -- Normal Distribution -- Gamma Function -- t-distribution -- F-distribution -- 0.2. Confidence Intervals (or Bands) and T-tests -- 0.3. Elements of Matrix Algebra -- Matrix, Vector, Scalar -- Equality -- Sum and Difference -- Transpose -- Symmetry -- Multiplication -- Special Matrices and Vectors -- Orthogonality -- Inverse Matrix -- Obtaining an Inverse -- Determinants -- Common Factors 
505 8 |a Chapter 1: Fitting a Straight Line by Least Squares -- 1.0. Introduction: the Need for Statistical Analysis -- 1.1. Straight Line Relationship Between Two Variables -- 1.2. Linear Regression: Fitting a Straight Line by Least Squares -- Meaning of Linear Model -- Least Squares Estimation -- Pocket-calculator Form -- Calculations for the Steam Data -- Centering the Data -- 1.3. The Analysis of Variance -- Sums of Squares -- Degrees of Freedom (df) -- Analysis of Variance Table -- Steam Data Calculations -- Skeleton Analysis of Variance Ta Ble -- R2 Statistic 
505 8 |a 1.4. Confidence Intervals and Tests for ß0 and ß1 -- Standard Deviation of the Slope B1 -- Confidence Interval for ß1 -- Confidence Interval for ß1 -- Test for Ho: ß1 = ß10 Versus H1: ß1 ≠ ß10 -- Reject or Do Not Reject -- Confidence Interval Represents a Set of Tests -- Standard Deviation of the Intercept -- Confidence Interval for ß0 -- 1.5. F-test for Significance of Regression -- P-values for F-statistics -- F = T2 -- P-values for T-statistics -- 1.6. the Correlation Between X and Y -- Correlation and Regression -- Rxy and R Connections -- Testing a Single Correlation 
505 8 |a Adding (or Dropping) X's Can Affect Maximum R2 -- Approximate Repeats -- Generic Pure Error Situations Illustrated Via Straight Line Fits -- 2.2. Testing Homogeneity of Pure Error -- Bartlett's Test -- Bartlett's Test Modified for Kurtosis -- Levene's Test Using Means -- Levene's Test Using Medians -- Some Cautionary Remarks -- A Second Example -- 2.3. Examining Residuals: the Basic Plots -- How Should the Residuals Behave? -- 2.4. Non-normality Checks on Residuals -- Normal Plot of Residuals -- 2.5. Checks for Time Effects, Nonconstant Variance, Need for Transformation, and Curvature 
500 |a Three Questions and Answers 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Draper, Norman R.  |t Applied Regression Analysis  |d Newark : John Wiley & Sons, Incorporated,c1998  |z 9780471170822 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7103889  |z Texto completo 
880 8 |6 505-00/(S  |a 1.7. Summary of the Straight Line Fit Computations -- Pocket-calculator Computations -- 1.8. Historical Remarks -- Appendix 1 A. Steam Plant Data -- Exercises -- Chapter 2: Checking the Straight Line Fit -- 2.1. Lack of Fit and Pure Error -- General Discussion of Variance and Bias -- How Big Is σ2-- Genuine Repeats Are Needed -- Calculation of Pure Error and Lack of Fit Mean Squares -- Special Formula When Nj = 2 -- Split of the Residual ss -- Effect of Repeat Runs on R2 -- Looking at the Data and Fitted Model -- Pure Error in the Many Predictors Case 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7103889 
994 |a 92  |b IZTAP