Solutions Manual to Accompany Introduction to Abstract Algebra, 4e, Solutions Manual
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2012.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Chapter 0: Preliminaries
- 0.1 Proofs
- 0.2 Sets
- 0.3 Mappings
- 0.4 Equivalences
- Chapter 1: Integers and Permutations
- 1.1 Induction
- 1.2 Divisors and Prime Factorization
- 1.3 Integers Modulo n
- 1.4 Permutations
- Chapter 2: Groups
- 2.1 Binary Operations
- 2.2 Groups
- 2.3 Subgroups
- 2.4 Cyclic Groups and the Order of an Element
- 2.5 Homomorphisms and Isomorphisms
- 2.6 Cosets and Lagrange's Theorem
- 2.7 Groups of Motions and Symmetries
- 2.8 Normal Subgroups
- 2.9 Factor Groups
- 2.10 The Isomorphism Theorem
- 2.11 An Application to Binary Linear Codes
- Chapter 3: Rings
- 3.1 Examples and Basic Properties
- 3.2 Integral Domains and Fields
- 3.3 Ideals and Factor Rings
- 3.4 Homomorphisms
- 3.5 Ordered Integral Domains
- Chapter 4: Polynomials
- 4.1 Polynomials
- 4.2 Factorization of Polynomials over a Field
- 4.3 Factor Rings of Polynomials over a Field
- 4.4 Partial Fractions
- 4.5 Symmetric Polynomials
- Chapter 5: Factorization in Integral Domains
- 5.1 Irreducibles and Unique Factorization
- 5.2 Principal Ideal Domains
- Chapter 6: Fields
- 6.1 Vector Spaces
- 6.2 Algebraic Extensions
- 6.3 Splitting Fields
- 6.4 Finite Fields
- 6.5 Geometric Constructions
- 6.7 An Application to Cyclic and Bch Codes
- Chapter 7: Modules over Principal Ideal Domains
- 7.1 Modules
- 7.2 Modules over a Principal Ideal Domain
- Chapter 8: P-groups and the Sylow Theorems
- 8.1 Products and Factors
- 8.2 Cauchy's Theorem
- 8.3 Group Actions
- 8.4 The Sylow Theorems
- 8.5 Semidirect Products
- 8.6 An Application to Combinatorics
- Chapter 9: Series of Subgroups
- 9.1 The Jordan-Hölder Theorem
- 9.2 Solvable Groups
- 9.3 Nilpotent Groups
- Chapter 10: Galois Theory
- 10.1 Galois Groups and Separability
- 10.2 The Main Theorem of Galois Theory
- 10.3 Insolvability of Polynomials
- 10.4 Cyclotomic Polynomials and Wedderburn's Theorem
- Chapter 11: Finiteness Conditions for Rings and Modules
- 11.1 Wedderburn's Theorem
- 11.2 The Wedderburn-artin Theorem
- Appendices
- Appendix A: Complex Numbers
- Appendix B: Matrix Arithmetic
- Appendix C: Zorn's Lemma