Statistics with JMP
Statistics with JMP: Hypothesis Tests, ANOVA and Regression Peter Goos, University of Leuven and University of Antwerp, Belgium David Meintrup, University of Applied Sciences Ingolstadt, Germany A first course on basic statistical methodology using JMP This book provides a first course on parameter...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2016.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Statistics with JMP: Hypothesis Tests, Anova and Regression
- Contents
- Preface
- Software
- Data Files
- Acknowledgments
- Part One Estimators and Tests
- 1 Estimating Population Parameters
- 1.1 Introduction: Estimators Versus Estimates
- 1.2 Estimating a Mean Value
- 1.2.1 The Mean of a Normally Distributed Population
- 1.2.2 The Mean of an Exponentially Distributed Population
- 1.3 Criteria for Estimators
- 1.3.1 Unbiased Estimators
- 1.3.2 The Efficiency of an Estimator
- 1.4 Methods for the Calculation of Estimators
- 1.5 The Sample Mean
- 1.5.1 The Expected Value and the Variance
- 1.5.2 The Probability Density of the Sample Mean for a Normally Distributed Population
- 1.5.3 The Probability Density of the Sample Mean for a Nonnormally Distributed Population
- 1.5.4 An Illustration of the Central Limit Theorem
- 1.6 The Sample Proportion
- 1.7 The Sample Variance
- 1.7.1 The Expected Value
- 1.7.2 The 2-Distribution
- 1.7.3 The Relation Between the Standard Normal and the 2-Distribution
- 1.7.4 The Probability Density of the Sample Variance
- 1.8 The Sample Standard Deviation
- 1.9 Applications
- 2 Interval Estimators
- 2.1 Point and Interval Estimators
- 2.2 Confidence Intervals for a Population Mean with Known Variance
- 2.2.1 The Percentiles of the Standard Normal Density
- 2.2.2 Computing a Confidence Interval
- 2.2.3 The Width of a Confidence Interval
- 2.2.4 The Margin of Error
- 2.3 Confidence Intervals for a Population Mean with Unknown Variance
- 2.3.1 The Student t-Distribution
- 2.3.2 The Application of the t-Distribution to Construct Confidence Intervals
- 2.4 Confidence Intervals for a Population Proportion
- 2.4.1 A First Interval Estimator Based on the Normal Distribution
- 2.4.2 A Second Interval Estimator Based on the Normal Distribution
- 2.4.3 An Interval Estimator Based on the Binomial Distribution
- 2.5 Confidence Intervals for a Population Variance
- 2.6 More Confidence Intervals in JMP
- 2.7 Determining the Sample Size
- 2.7.1 The Population Mean
- 2.7.2 The Population Proportion
- 3 Hypothesis Tests
- 3.1 Key Concepts
- 3.2 Testing Hypotheses About a Population Mean
- 3.2.1 The Right-Tailed Test
- 3.2.2 The Left-Tailed Test
- 3.2.3 The Two-Tailed Test
- 3.3 The Probability of a Type II Error and the Power
- 3.4 Determination of the Sample Size
- 3.5 JMP
- 3.6 Some Important Notes Concerning Hypothesis Testing
- 3.6.1 Fixing the Significance Level
- 3.6.2 A Note on the "Acceptance" of the Null Hypothesis
- 3.6.3 Statistical and Practical Significance
- Part Two One Population
- 4 Hypothesis Tests for a Population Mean, Proportion, or Variance
- 4.1 Hypothesis Tests for One Population Mean
- 4.1.1 The Right-Tailed Test
- 4.1.2 The Left-Tailed Test
- 4.1.3 The Two-Tailed Test
- 4.1.4 Nonnormal Data
- 4.1.5 The Use of JMP
- 4.2 Hypothesis Tests for a Population Proportion
- 4.2.1 Tests Based on the Normal Distribution