Simulation and the Monte Carlo Method
This revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized intr...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2016.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- SIMULATION AND THE MONTE CARLO METHOD
- CONTENTS
- PREFACE
- ACKNOWLEDGMENTS
- CHAPTER 1 PRELIMINARIES
- 1.1 INTRODUCTION
- 1.2 RANDOM EXPERIMENTS
- 1.3 CONDITIONAL PROBABILITY AND INDEPENDENCE
- 1.4 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
- 1.5 SOME IMPORTANT DISTRIBUTIONS
- 1.6 EXPECTATION
- 1.7 JOINT DISTRIBUTIONS
- 1.8 FUNCTIONS OF RANDOM VARIABLES
- 1.8.1 Linear Transformations
- 1.8.2 General Transformations
- 1.9 TRANSFORMS
- 1.10 JOINTLY NORMAL RANDOM VARIABLES
- 1.11 LIMIT THEOREMS
- 1.12 POISSON PROCESSES
- 1.13 MARKOV PROCESSES
- 1.13.1 Markov Chains
- 1.13.2 Classification of States
- 1.13.3 Limiting Behavior
- 1.13.4 Reversibility
- 1.13.5 Markov Jump Processes
- 1.14 GAUSSIAN PROCESSES
- 1.15 INFORMATION
- 1.15.1 Shannon Entropy
- 1.15.2 Kullback-Leibler Cross-Entropy
- 1.15.3 Maximum Likelihood Estimator and Score Function
- 1.15.4 Fisher Information
- 1.16 CONVEX OPTIMIZATION AND DUALITY
- 1.16.1 Lagrangian Method
- 1.16.2 Duality
- PROBLEMS
- REFERENCES
- CHAPTER 2 RANDOM NUMBER, RANDOM VARIABLE, AND STOCHASTIC PROCESS GENERATION
- 2.1 INTRODUCTION
- 2.2 RANDOM NUMBER GENERATION
- 2.2.1 Multiple Recursive Generators
- 2.2.2 Modulo 2 Linear Generators
- 2.3 RANDOM VARIABLE GENERATION
- 2.3.1 Inverse-Transform Method
- 2.3.2 Alias Method
- 2.3.3 Composition Method
- 2.3.4 Acceptance-Rejection Method
- 2.4 GENERATING FROM COMMONLY USED DISTRIBUTIONS
- 2.4.1 Generating Continuous Random Variables
- 2.4.2 Generating Discrete Random Variables
- 2.5 RANDOM VECTOR GENERATION
- 2.5.1 Vector Acceptance-Rejection Method
- 2.5.2 Generating Variables from a Multinormal Distribution
- 2.5.3 Generating Uniform Random Vectors over a Simplex
- 2.5.4 Generating Random Vectors Uniformly Distributed over a Unit Hyperball and Hypersphere
- 2.5.5 Generating Random Vectors Uniformly Distributed inside a Hyperellipsoid
- 2.6 GENERATING POISSON PROCESSES
- 2.7 GENERATING MARKOV CHAINS AND MARKOV JUMP PROCESSES
- 2.7.1 Random Walk on a Graph
- 2.7.2 Generating Markov Jump Processes
- 2.8 GENERATING GAUSSIAN PROCESSES
- 2.9 GENERATING DIFFUSION PROCESSES
- 2.10 GENERATING RANDOM PERMUTATIONS
- PROBLEMS
- REFERENCES
- CHAPTER 3 SIMULATION OF DISCRETE-EVENT SYSTEMS
- 3.1 INTRODUCTION
- 3.2 SIMULATION MODELS
- 3.2.1 Classification of Simulation Models
- 3.3 SIMULATION CLOCK AND EVENT LIST FOR DEDS
- 3.4 DISCRETE-EVENT SIMULATION
- 3.4.1 Tandem Queue
- 3.4.2 Repairman Problem
- PROBLEMS
- REFERENCES
- CHAPTER 4 STATISTICAL ANALYSIS OF DISCRETE-EVENT SYSTEMS
- 4.1 INTRODUCTION
- 4.2 ESTIMATORS AND CONFIDENCE INTERVALS
- 4.3 STATIC SIMULATION MODELS
- 4.4 DYNAMIC SIMULATION MODELS
- 4.4.1 Finite-Horizon Simulation
- 4.4.2 Steady-State Simulation
- 4.5 BOOTSTRAP METHOD
- PROBLEMS
- REFERENCES
- CHAPTER 5 CONTROLLING THE VARIANCE
- 5.1 INTRODUCTION