Introduction to Infrared and Electro-Optical Systems /
This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Targ...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Norwood :
Artech House,
2022.
|
Edición: | Third edition. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Introduction to Infrared and Electro-Optical Systems Third Edition
- Contents
- Preface
- Acknowledgments
- Chapter 1 Introduction
- 1.1 Introduction to Imaging
- 1.2 Infrared and EO Systems
- 1.3 Wavelength Dependencies
- 1.4 Typical EO Scenario
- 1.5 Typical Infrared Scenario
- 1.6 Analytical Parameters
- 1.7 Sensitivity and Resolution
- 1.8 Linear Systems Approach
- 1.9 Summary
- 1.10 Guide to the References
- References
- Chapter 2 Mathematics
- 2.1 Complex Functions
- 2.2 Common One-Dimensional Functions
- 2.3 The 2-D Functions
- 2.4 Convolution and Correlation
- 2.5 The Fourier Transform
- 2.6 Fourier Transform Properties
- 2.7 Transform Pairs and Delta Function Properties
- 2.8 Probability
- 2.9 Important Examples
- 2.10 Guide to the References
- References
- Selected Bibliography
- Software
- Chapter 3 Linear Shift-Invariant Systems
- 3.1 Linear Systems
- 3.2 Shift Invariance
- 3.3 Basics of LSI Systems
- 3.4 Impulse Response
- 3.5 Transfer Function
- 3.6 System PSF and MTF Versus Component PSF and MTF
- 3.7 Spatial Sampling
- 3.8 Spatial Sampling and Resolution
- 3.9 Sampled Imaging Systems
- 3.10 Guide to the References
- References
- Selected Bilbiography
- Chapter 4 Diffraction
- 4.1 Electromagnetic Waves
- 4.2 Coherence
- 4.3 Fresnel and Fraunhofer Diffraction from an Aperture
- 4.3.1 Fresnel Diffraction
- 4.3.2 Fraunhofer Diffraction
- 4.4 Fraunhofer Diffraction from a Thin Lens
- 4.5 Thin Lens Optical System Diffraction PSF
- 4.6 Thin Lens Diffraction MTF
- 4.6.1 Modulation and MTF
- 4.6.2 Incoherent Diffraction MTF
- 4.6.3 Coherent Diffraction MTF
- 4.7 Calculation of Diffraction MTF
- 4.7.1 Circular Pupil: Coherent MTF
- 4.7.2 Circular Pupil: Incoherent MTF
- 4.8 Programs for Calculating Incoherent Diffraction MTF
- 4.9 Applications of Diffraction Theory.
- 4.9.1 Frequency Analysis of Optical Systems
- 4.9.2 Application to Geometric Optics
- 4.9.3 PSF of Distributed Aperture
- 4.9.4 Optical Image Processing
- 4.9.5 Stellar Interferometry
- 4.9.6 Apodization
- 4.9.7 Detector MTF from the Fraunhofer Diffraction Pattern
- 4.10 Light Goes Around Corners: The Poisson Spot
- References
- Chapter 5 Sources of Radiation
- 5.1 Radiometry and Photometry
- 5.1.1 Radiometric Units
- 5.1.2 Photometric Units
- 5.2 Infrared Targets and Backgrounds
- 5.2.1 Blackbody Radiation
- 5.2.2 Emissivity
- 5.2.3 Equivalent Differential Temperature (Delta T)
- 5.2.4 Apparent Differential Temperature (Apparent Delta T)
- 5.3 EO Targets and Backgrounds
- 5.3.1 External Sources
- 5.3.2 Contrast
- 5.4 Other Sensitivity Considerations
- 5.4.1 Bidirectional Reflectance Distribution Function
- 5.4.2 Color Considerations
- 5.5 Target and Background Spatial Characteristics
- 5.5.1 Bar Target Representation of Targets
- 5.5.2 Target Delta T and Characteristic Dimension
- 5.5.3 Summary of Target Characteristics
- 5.5.4 Clutter
- 5.5.5 Simulation of Target Characteristics
- 5.6 Typical Mid-Wave and Long-Wave Contrasts and Solar Effects
- References
- Selected Bibliography
- Chapter 6 Atmospherics
- 6.1 Atmospheric Components and Structure
- 6.2 Atmospheric Transmission
- 6.3 Absorption
- 6.4 Scattering
- 6.5 Path Radiance
- 6.6 Turbulence
- 6.7 Atmospheric Modulation Transfer Function
- 6.8 Models and Tools
- 6.9 Model Background Discussion
- 6.10 Some Practical Considerations
- References
- Chapter 7 Optics
- 7.1 Light Representation and the Optical Path Length
- 7.2 Reflection and Snell's Law of Refraction
- 7.3 The Thin Lens, Ray-Tracing Rules, and Gauss's Equation
- 7.4 Spherical Mirrors
- 7.5 Modeling the Thick Lens
- 7.6 Vergence
- 7.7 Multiple-Lens Systems
- 7.8 FOV.
- 7.9 Resolution
- 7.10 Aperture Stop, Pupils, and Rays
- 7.11 f-Number and Numerical Aperture
- 7.12 Telescopes and Angular Magnification
- 7.13 MTF
- 7.14 Aberrations
- 7.15 Optical Materials
- 7.16 Cold Stop and Cold Shield
- 7.17 A Typical Optical System
- 7.18 Diffraction Blur
- References
- Chapter 8 Detectors
- 8.1 Types of Detectors
- 8.1.1 Photon Detectors
- 8.1.2 Photoconductors
- 8.1.3 Photovoltaic
- 8.1.4 Photoemissive
- 8.1.5 Thermal Detectors
- 8.1.6 Bolometers
- 8.1.7 Pyroelectric Detectors
- 8.2 CCD and ROIC
- 8.2.1 CCD
- 8.2.2 Multiplexed Analog Readout
- 8.2.3 Column ADC ROIC or D-ROIC
- 8.3 Detector Sensitivity Analysis
- 8.3.1 Quantum Efficiency
- 8.3.2 Responsivity
- 8.3.3 Sensitivity
- 8.3.4 Detector Angular Subtense
- 8.3.5 FPA and Detector Noise (Including Detector 1/f Noise)
- 8.3.6 Dark Current and Rule'07
- 8.3.7 1/f Noise
- 8.3.8 Photon Shot Noise
- 8.3.9 FPA and ROIC Noise (Including Fixed Pattern Noise) in Staring Systems
- 8.3.10 BLIP
- 8.4 EO Systems: Staring and Scanning Configurations
- 8.4.1 Raster Scan Systems
- 8.4.2 Linear Scan and TDI
- 8.4.3 Staring Systems: Focal Plane Arrays
- 8.5 Detector Transfer Functions
- 8.6 EO Detectors: Materials and Technology
- 8.6.1 MWIR and LWIR Photon Detectors
- 8.6.2 Far Infrared: VLWIR
- 8.6.3 Uncooled Bolometer
- 8.6.4 Visible and NIR
- 8.7 New and Emerging Infrared Detector Technology
- 8.7.1 Ultra-Large-Format Arrays and Small Pitch
- 8.7.2 Dual-Band Detectors (Third Generation)
- 8.7.2 Dual-Band Detectors (Third Generation)
- 8.7.3 Direct Bond Hybridization
- 8.7.4 Advanced ROIC Technology and Digital Pixel
- 8.7.5 Next Generation Imagers
- 8.7.6 Avalanche Photodiodes, Laser Range Gating, and Active and PassiveDetectors
- References
- Chapter 9 Electronics
- 9.1 Detector Circuits.
- 9.2 Conversion of Spatial and Temporal Frequencies
- 9.3 Electronics Transfer Function
- 9.4 Noise
- 9.4.1 Johnson Noise
- 9.4.2 1/f Noise
- 9.4.3 Shot Noise
- 9.5 MTF Boost Filter
- 9.6 Digital Filter MTF
- 9.7 CCDs
- 9.8 Uniformity Correction or NUC
- 9.9 Design and Construction of Camera Electronics
- References
- Chapter 10 Image Processing
- 10.1 Basics of Sampling Theory
- 10.2 Applications of Image Filtering
- 10.2.1 Localized Contrast Enhancement
- 10.2.2 Boost Filtering
- 10.2.3 Sensor Design Considerations
- 10.3 Super-Resolution Image Reconstruction
- 10.3.1 Image Acquisition: Microdither Scanner Versus Natural Jitter
- 10.3.2 Subpixel Shift Estimation
- 10.3.3 Image Reconstruction
- 10.3.4 Example and Performance Estimates
- 10.4 Image Fusion
- 10.4.1 Fusion Algorithms
- 10.5 Scene-Based NUC
- 10.6 Deep Learning
- 10.6.1 Super-Resolution
- 10.6.2 Contrast Enhancement
- 10.6.3 Image Fusion
- 10.6.4 Scene-Based NUC
- 10.7 Summary
- References
- Chapter 11 Displays, Human Perception, and Automatic Target Recognizers
- 11.1 Displays
- 11.2 CRTs
- 11.2.1 CRT Example Results
- 11.3 LEDs
- 11.4 LCDs
- 11.5 Plasma Displays
- 11.6 Emerging Display Technologies
- 11.7 Sampling and Display Processing
- 11.8 Human Perception and the Human Eye
- 11.9 MTF of the Eye
- 11.10 CTF of the Eye
- 11.11 Automatic Target Recognition
- References
- Chapter 12 Historical Performance Models
- 12.1 Introduction
- 12.2 Johnson Model Fundamentals
- 12.3 The MRT Model
- 12.4 The First FLIRs and Models
- 12.5 Model Improvements for Resolution and Noise
- 12.6 Incorporating Eye Contrast Limitations
- 12.7 Model Improvement to Add Sampling
- 12.8 Other Improvements Prior to the TTP Metric
- 12.9 The TRM3 Model
- 12.10 Triangle Orientation Discrimination (TOD).
- 12.11 Imager Modeling, Measurement, and Field Performance
- References
- Chapter 13 Contrast Threshold and TTP Metric
- 13.1 CTF of the Naked Eye
- 13.2 CTF for the Eye-Display System
- 13.3 Validation of Eye-Display CTF
- 13.4 Eye-Display Contrast Threshold Model
- 13.4.1 Eye-Display Contrast Threshold Model
- 13.4.2 Define Functions
- 13.4.3 Define Input Parameters
- 13.4.4 Run the Program
- 13.4.5 Comparison with Existing Models
- 13.5 TTP Metric and Range Performance Mode
- 13.6 Guide to the References
- References
- Appendix 13A
- 13A.1 Direct Calculation of CTFeye-disp,h
- Chapter 14 EO and Infrared System Performance andTarget Acquisition
- 14.1 Sensitivity and Resolution
- 14.2 NETD
- 14.3 EO Noise and Noise Equivalent Irradiance
- 14.3.1 Noise Equivalent Irradiance
- 14.4 3-D Noise
- 14.5 MTF
- 14.6 MRTD (Including 2-D MRT)
- 14.6.1 2-D MRT
- 14.7 Target Acquisition with Limiting Frequency (Johnson's N50)
- 14.8 System CTF
- 14.9 Target Acquisition with the Target Task Performance (TTP)Metric (and Vollmerhausen's V50)
- 14.10 Target Sets
- 14.11 Classic ISR, NIIRS, and General Image Quality
- 14.11.1 NIIRS
- 14.11.2 GIQE Model
- 14.12 The Performance Benefits of Dual-Band Infrared Imagers
- 14.12.1 Dual-Band Imagers
- 14.12.2 Long-Range Target Detection and Identification
- 14.12.3 Imaging with Hot Targets in the FOV
- 14.12.4 Cold-Weather Performance
- 14.12.5 Imaging Through Turbulence
- 14.12.6 Imaging Through Fog-Oil Smoke
- 14.12.7 Target Contrast (Up Close)
- 14.12.8 ATR Performance
- 14.12.9 Motion Blur and Integration Time
- 14.12.10 Target Spectral Exploitation
- 14.12.11 Signal and Image Processing: Boost, Local Area Contrast Enhancement
- 14.12.12 Imaging Through Fog, High Humidity, Rain, Haze, Smoke, and Dust
- 14.12.13 Discussion
- 14.13 Small Detector Infrared Systems.