Cargando…

Introduction to Infrared and Electro-Optical Systems /

This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Targ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Driggers, Ronald G.
Otros Autores: Friedman, Melvin H., Devitt, John W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Norwood : Artech House, 2022.
Edición:Third edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Introduction to Infrared and Electro-Optical Systems Third Edition
  • Contents
  • Preface
  • Acknowledgments
  • Chapter 1 Introduction
  • 1.1 Introduction to Imaging
  • 1.2 Infrared and EO Systems
  • 1.3 Wavelength Dependencies
  • 1.4 Typical EO Scenario
  • 1.5 Typical Infrared Scenario
  • 1.6 Analytical Parameters
  • 1.7 Sensitivity and Resolution
  • 1.8 Linear Systems Approach
  • 1.9 Summary
  • 1.10 Guide to the References
  • References
  • Chapter 2 Mathematics
  • 2.1 Complex Functions
  • 2.2 Common One-Dimensional Functions
  • 2.3 The 2-D Functions
  • 2.4 Convolution and Correlation
  • 2.5 The Fourier Transform
  • 2.6 Fourier Transform Properties
  • 2.7 Transform Pairs and Delta Function Properties
  • 2.8 Probability
  • 2.9 Important Examples
  • 2.10 Guide to the References
  • References
  • Selected Bibliography
  • Software
  • Chapter 3 Linear Shift-Invariant Systems
  • 3.1 Linear Systems
  • 3.2 Shift Invariance
  • 3.3 Basics of LSI Systems
  • 3.4 Impulse Response
  • 3.5 Transfer Function
  • 3.6 System PSF and MTF Versus Component PSF and MTF
  • 3.7 Spatial Sampling
  • 3.8 Spatial Sampling and Resolution
  • 3.9 Sampled Imaging Systems
  • 3.10 Guide to the References
  • References
  • Selected Bilbiography
  • Chapter 4 Diffraction
  • 4.1 Electromagnetic Waves
  • 4.2 Coherence
  • 4.3 Fresnel and Fraunhofer Diffraction from an Aperture
  • 4.3.1 Fresnel Diffraction
  • 4.3.2 Fraunhofer Diffraction
  • 4.4 Fraunhofer Diffraction from a Thin Lens
  • 4.5 Thin Lens Optical System Diffraction PSF
  • 4.6 Thin Lens Diffraction MTF
  • 4.6.1 Modulation and MTF
  • 4.6.2 Incoherent Diffraction MTF
  • 4.6.3 Coherent Diffraction MTF
  • 4.7 Calculation of Diffraction MTF
  • 4.7.1 Circular Pupil: Coherent MTF
  • 4.7.2 Circular Pupil: Incoherent MTF
  • 4.8 Programs for Calculating Incoherent Diffraction MTF
  • 4.9 Applications of Diffraction Theory.
  • 4.9.1 Frequency Analysis of Optical Systems
  • 4.9.2 Application to Geometric Optics
  • 4.9.3 PSF of Distributed Aperture
  • 4.9.4 Optical Image Processing
  • 4.9.5 Stellar Interferometry
  • 4.9.6 Apodization
  • 4.9.7 Detector MTF from the Fraunhofer Diffraction Pattern
  • 4.10 Light Goes Around Corners: The Poisson Spot
  • References
  • Chapter 5 Sources of Radiation
  • 5.1 Radiometry and Photometry
  • 5.1.1 Radiometric Units
  • 5.1.2 Photometric Units
  • 5.2 Infrared Targets and Backgrounds
  • 5.2.1 Blackbody Radiation
  • 5.2.2 Emissivity
  • 5.2.3 Equivalent Differential Temperature (Delta T)
  • 5.2.4 Apparent Differential Temperature (Apparent Delta T)
  • 5.3 EO Targets and Backgrounds
  • 5.3.1 External Sources
  • 5.3.2 Contrast
  • 5.4 Other Sensitivity Considerations
  • 5.4.1 Bidirectional Reflectance Distribution Function
  • 5.4.2 Color Considerations
  • 5.5 Target and Background Spatial Characteristics
  • 5.5.1 Bar Target Representation of Targets
  • 5.5.2 Target Delta T and Characteristic Dimension
  • 5.5.3 Summary of Target Characteristics
  • 5.5.4 Clutter
  • 5.5.5 Simulation of Target Characteristics
  • 5.6 Typical Mid-Wave and Long-Wave Contrasts and Solar Effects
  • References
  • Selected Bibliography
  • Chapter 6 Atmospherics
  • 6.1 Atmospheric Components and Structure
  • 6.2 Atmospheric Transmission
  • 6.3 Absorption
  • 6.4 Scattering
  • 6.5 Path Radiance
  • 6.6 Turbulence
  • 6.7 Atmospheric Modulation Transfer Function
  • 6.8 Models and Tools
  • 6.9 Model Background Discussion
  • 6.10 Some Practical Considerations
  • References
  • Chapter 7 Optics
  • 7.1 Light Representation and the Optical Path Length
  • 7.2 Reflection and Snell's Law of Refraction
  • 7.3 The Thin Lens, Ray-Tracing Rules, and Gauss's Equation
  • 7.4 Spherical Mirrors
  • 7.5 Modeling the Thick Lens
  • 7.6 Vergence
  • 7.7 Multiple-Lens Systems
  • 7.8 FOV.
  • 7.9 Resolution
  • 7.10 Aperture Stop, Pupils, and Rays
  • 7.11 f-Number and Numerical Aperture
  • 7.12 Telescopes and Angular Magnification
  • 7.13 MTF
  • 7.14 Aberrations
  • 7.15 Optical Materials
  • 7.16 Cold Stop and Cold Shield
  • 7.17 A Typical Optical System
  • 7.18 Diffraction Blur
  • References
  • Chapter 8 Detectors
  • 8.1 Types of Detectors
  • 8.1.1 Photon Detectors
  • 8.1.2 Photoconductors
  • 8.1.3 Photovoltaic
  • 8.1.4 Photoemissive
  • 8.1.5 Thermal Detectors
  • 8.1.6 Bolometers
  • 8.1.7 Pyroelectric Detectors
  • 8.2 CCD and ROIC
  • 8.2.1 CCD
  • 8.2.2 Multiplexed Analog Readout
  • 8.2.3 Column ADC ROIC or D-ROIC
  • 8.3 Detector Sensitivity Analysis
  • 8.3.1 Quantum Efficiency
  • 8.3.2 Responsivity
  • 8.3.3 Sensitivity
  • 8.3.4 Detector Angular Subtense
  • 8.3.5 FPA and Detector Noise (Including Detector 1/f Noise)
  • 8.3.6 Dark Current and Rule'07
  • 8.3.7 1/f Noise
  • 8.3.8 Photon Shot Noise
  • 8.3.9 FPA and ROIC Noise (Including Fixed Pattern Noise) in Staring Systems
  • 8.3.10 BLIP
  • 8.4 EO Systems: Staring and Scanning Configurations
  • 8.4.1 Raster Scan Systems
  • 8.4.2 Linear Scan and TDI
  • 8.4.3 Staring Systems: Focal Plane Arrays
  • 8.5 Detector Transfer Functions
  • 8.6 EO Detectors: Materials and Technology
  • 8.6.1 MWIR and LWIR Photon Detectors
  • 8.6.2 Far Infrared: VLWIR
  • 8.6.3 Uncooled Bolometer
  • 8.6.4 Visible and NIR
  • 8.7 New and Emerging Infrared Detector Technology
  • 8.7.1 Ultra-Large-Format Arrays and Small Pitch
  • 8.7.2 Dual-Band Detectors (Third Generation)
  • 8.7.2 Dual-Band Detectors (Third Generation)
  • 8.7.3 Direct Bond Hybridization
  • 8.7.4 Advanced ROIC Technology and Digital Pixel
  • 8.7.5 Next Generation Imagers
  • 8.7.6 Avalanche Photodiodes, Laser Range Gating, and Active and PassiveDetectors
  • References
  • Chapter 9 Electronics
  • 9.1 Detector Circuits.
  • 9.2 Conversion of Spatial and Temporal Frequencies
  • 9.3 Electronics Transfer Function
  • 9.4 Noise
  • 9.4.1 Johnson Noise
  • 9.4.2 1/f Noise
  • 9.4.3 Shot Noise
  • 9.5 MTF Boost Filter
  • 9.6 Digital Filter MTF
  • 9.7 CCDs
  • 9.8 Uniformity Correction or NUC
  • 9.9 Design and Construction of Camera Electronics
  • References
  • Chapter 10 Image Processing
  • 10.1 Basics of Sampling Theory
  • 10.2 Applications of Image Filtering
  • 10.2.1 Localized Contrast Enhancement
  • 10.2.2 Boost Filtering
  • 10.2.3 Sensor Design Considerations
  • 10.3 Super-Resolution Image Reconstruction
  • 10.3.1 Image Acquisition: Microdither Scanner Versus Natural Jitter
  • 10.3.2 Subpixel Shift Estimation
  • 10.3.3 Image Reconstruction
  • 10.3.4 Example and Performance Estimates
  • 10.4 Image Fusion
  • 10.4.1 Fusion Algorithms
  • 10.5 Scene-Based NUC
  • 10.6 Deep Learning
  • 10.6.1 Super-Resolution
  • 10.6.2 Contrast Enhancement
  • 10.6.3 Image Fusion
  • 10.6.4 Scene-Based NUC
  • 10.7 Summary
  • References
  • Chapter 11 Displays, Human Perception, and Automatic Target Recognizers
  • 11.1 Displays
  • 11.2 CRTs
  • 11.2.1 CRT Example Results
  • 11.3 LEDs
  • 11.4 LCDs
  • 11.5 Plasma Displays
  • 11.6 Emerging Display Technologies
  • 11.7 Sampling and Display Processing
  • 11.8 Human Perception and the Human Eye
  • 11.9 MTF of the Eye
  • 11.10 CTF of the Eye
  • 11.11 Automatic Target Recognition
  • References
  • Chapter 12 Historical Performance Models
  • 12.1 Introduction
  • 12.2 Johnson Model Fundamentals
  • 12.3 The MRT Model
  • 12.4 The First FLIRs and Models
  • 12.5 Model Improvements for Resolution and Noise
  • 12.6 Incorporating Eye Contrast Limitations
  • 12.7 Model Improvement to Add Sampling
  • 12.8 Other Improvements Prior to the TTP Metric
  • 12.9 The TRM3 Model
  • 12.10 Triangle Orientation Discrimination (TOD).
  • 12.11 Imager Modeling, Measurement, and Field Performance
  • References
  • Chapter 13 Contrast Threshold and TTP Metric
  • 13.1 CTF of the Naked Eye
  • 13.2 CTF for the Eye-Display System
  • 13.3 Validation of Eye-Display CTF
  • 13.4 Eye-Display Contrast Threshold Model
  • 13.4.1 Eye-Display Contrast Threshold Model
  • 13.4.2 Define Functions
  • 13.4.3 Define Input Parameters
  • 13.4.4 Run the Program
  • 13.4.5 Comparison with Existing Models
  • 13.5 TTP Metric and Range Performance Mode
  • 13.6 Guide to the References
  • References
  • Appendix 13A
  • 13A.1 Direct Calculation of CTFeye-disp,h
  • Chapter 14 EO and Infrared System Performance andTarget Acquisition
  • 14.1 Sensitivity and Resolution
  • 14.2 NETD
  • 14.3 EO Noise and Noise Equivalent Irradiance
  • 14.3.1 Noise Equivalent Irradiance
  • 14.4 3-D Noise
  • 14.5 MTF
  • 14.6 MRTD (Including 2-D MRT)
  • 14.6.1 2-D MRT
  • 14.7 Target Acquisition with Limiting Frequency (Johnson's N50)
  • 14.8 System CTF
  • 14.9 Target Acquisition with the Target Task Performance (TTP)Metric (and Vollmerhausen's V50)
  • 14.10 Target Sets
  • 14.11 Classic ISR, NIIRS, and General Image Quality
  • 14.11.1 NIIRS
  • 14.11.2 GIQE Model
  • 14.12 The Performance Benefits of Dual-Band Infrared Imagers
  • 14.12.1 Dual-Band Imagers
  • 14.12.2 Long-Range Target Detection and Identification
  • 14.12.3 Imaging with Hot Targets in the FOV
  • 14.12.4 Cold-Weather Performance
  • 14.12.5 Imaging Through Turbulence
  • 14.12.6 Imaging Through Fog-Oil Smoke
  • 14.12.7 Target Contrast (Up Close)
  • 14.12.8 ATR Performance
  • 14.12.9 Motion Blur and Integration Time
  • 14.12.10 Target Spectral Exploitation
  • 14.12.11 Signal and Image Processing: Boost, Local Area Contrast Enhancement
  • 14.12.12 Imaging Through Fog, High Humidity, Rain, Haze, Smoke, and Dust
  • 14.12.13 Discussion
  • 14.13 Small Detector Infrared Systems.