Learning and reasoning in hybrid structured spaces /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
IOS Press,
2022.
|
Colección: | Frontiers in artificial intelligence and applications ;
v. 350. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Abstract
- Acknowledgments
- Contents
- Introduction
- Motivation
- Contributions
- Outline of the Thesis
- Background
- Probabilistic Graphical Models
- Bayesian Networks
- Markov Networks
- Factor graphs
- The belief propagation algorithm
- Inference by Weighted Model Counting
- Propositional satisfiability
- Weighted Model Counting
- Logical structure
- Inference by Weighted Model Integration
- Satisfiability Modulo Theories
- Weighted Model Integration
- Related work
- Modelling and inference
- Learning
- WMI-PA
- Predicate Abstraction
- Weighted Model Integration, Revisited
- Basic case: WMI Without Atomic Propositions
- General Case: WMI With Atomic Propositions
- Conditional Weight Functions
- From WMI to WMIold and vice versa
- A Case Study
- Modelling a journey with a fixed path
- Modelling a journey under a conditional plan
- Efficiency of the encodings
- Efficient WMI Computation
- The Procedure WMI-AllSMT
- The Procedure WMI-PA
- WMI-PA vs. WMI-AllSMT
- Experiments
- Synthetic Setting
- Strategic Road Network with Fixed Path
- Strategic Road Network with Conditional Plans
- Discussion
- Final remarks
- MP-MI
- Preliminaries
- Computing MI
- Hybrid inference via MI
- On the inherent hardness of MI
- MP-MI: exact MI inference via message passing
- Propagation scheme
- Amortizing Queries
- Complexity of MP-MI
- Experiments
- Final remarks
- lariat
- Learning WMI distributions
- Learning the support
- Learning the weight function
- Normalization
- Experiments
- Final remarks
- Conclusion