Cargando…

Learning and reasoning in hybrid structured spaces /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Morettin, Paolo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : IOS Press, 2022.
Colección:Frontiers in artificial intelligence and applications ; v. 350.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1317772343
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 220517s2022 ne o 000 0 eng d
040 |a IOSPR  |b eng  |e rda  |e pn  |c IOSPR  |d N$T  |d EBLCP  |d OCLCF  |d OCLCQ  |d OCLCO  |d TMA  |d OCLCQ 
020 |a 9781643682679  |q (electronic bk.) 
020 |a 1643682679  |q (electronic bk.) 
020 |z 9781643682662  |q (print) 
035 |a (OCoLC)1317772343 
037 |a 9781643682679  |b IOS Press  |n http://www.iospress.nl 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Morettin, Paolo,  |e author. 
245 1 0 |a Learning and reasoning in hybrid structured spaces /  |c Paolo Morettin. 
264 1 |a Amsterdam, Netherlands :  |b IOS Press,  |c 2022. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers in artificial intelligence and applications ;  |v volume 350 
588 0 |a Online resource; title from] PDF title page (IOS Press, viewed May 17, 2022). 
505 0 |a Intro -- Title Page -- Abstract -- Acknowledgments -- Contents -- Introduction -- Motivation -- Contributions -- Outline of the Thesis -- Background -- Probabilistic Graphical Models -- Bayesian Networks -- Markov Networks -- Factor graphs -- The belief propagation algorithm -- Inference by Weighted Model Counting -- Propositional satisfiability -- Weighted Model Counting -- Logical structure -- Inference by Weighted Model Integration -- Satisfiability Modulo Theories -- Weighted Model Integration -- Related work -- Modelling and inference -- Learning -- WMI-PA -- Predicate Abstraction 
505 8 |a Weighted Model Integration, Revisited -- Basic case: WMI Without Atomic Propositions -- General Case: WMI With Atomic Propositions -- Conditional Weight Functions -- From WMI to WMIold and vice versa -- A Case Study -- Modelling a journey with a fixed path -- Modelling a journey under a conditional plan -- Efficiency of the encodings -- Efficient WMI Computation -- The Procedure WMI-AllSMT -- The Procedure WMI-PA -- WMI-PA vs. WMI-AllSMT -- Experiments -- Synthetic Setting -- Strategic Road Network with Fixed Path -- Strategic Road Network with Conditional Plans -- Discussion -- Final remarks 
505 8 |a MP-MI -- Preliminaries -- Computing MI -- Hybrid inference via MI -- On the inherent hardness of MI -- MP-MI: exact MI inference via message passing -- Propagation scheme -- Amortizing Queries -- Complexity of MP-MI -- Experiments -- Final remarks -- lariat -- Learning WMI distributions -- Learning the support -- Learning the weight function -- Normalization -- Experiments -- Final remarks -- Conclusion 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
830 0 |a Frontiers in artificial intelligence and applications ;  |v v. 350. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=29238892  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL29238892 
938 |a EBSCOhost  |b EBSC  |n 3283624 
994 |a 92  |b IZTAP