Cargando…

Investigation of Land Subsidence Due to Fluid Withdrawal

Investigation of Land Subsidence due to Fluid Withdrawalprovides a detailed overview of the occurrence and control of land subsidence due to fluid withdrawal.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Committee, Prepared by the Land Subsidence Task
Formato: Electrónico eBook
Idioma:Inglés
Publicado: : American Society of Civil Engineers, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Book_5078_C000
  • Half Title
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgments
  • Book_5078_C001
  • Chapter 1 : Introduction
  • 1.1 Purpose and Scope
  • 1.2 Background
  • 1.3 Occurrence and History of Subsidence
  • 1.4 Problems Resulting from Subsidence
  • References
  • Book_5078_C002
  • CHAPTER 2 : Subsidence Processes
  • 2.1 Compaction Caused by Fluid Extraction
  • 2.1.1 Extraction of Pore Fluids
  • 2.1.2 Groundwater
  • 2.1.3 Hydrocarbons
  • 2.1.4 Geothermal Fluids
  • 2.2 Hydrocompaction
  • References
  • Book_5078_C003
  • Chapter 3 : Aquifer Mechanics and Land Subsidence due to Groundwater
  • 3.1 Theory of Aquifer-System Compaction
  • 3.1.1 Principle of Effective Stress
  • 3.1.2 Aquifer-System Compressibility and Storage Concepts
  • 3.1.3 Theory of Hydrodynamic Consolidation
  • 3.2 Stress Causing Aquifer-System Compaction
  • 3.2.1 Static Stresses
  • 3.2.2 Dynamic Stresses
  • 3.3 Stress-Strain Relationship in Susceptible Aquifer Systems
  • 3.3.1 Stress-Strain Analysis
  • 3.3.2 Compressibilities of Clays and Sands from Tests in the Lab and Field
  • References
  • Book_5078_C004
  • CHAPTER 4 : Identification, Measurement, Mapping, and Monitoring
  • 4.1 Ground-Based Geodetic Surveys
  • 4.1.1 Precise Differential Leveling
  • 4.1.2 Global Positioning System
  • 4.1.3 Other Techniques for Measuring Land-Surface Change
  • 4.1.4 Extensometry
  • 4.1.4.1 Single and Double Pipe Borehole Extensometers
  • 4.1.4.2 Anchored-Cable and Free-Pipe Extensometers
  • 4.1.4.3 Slip Joints
  • 4.1.4.4 Telescopic Extensometer
  • 4.1.4.5 Extensometer Records
  • 4.1.5 Tripod-Mounted LiDAR
  • 4.1.6 Other Techniques of Subsurface Measurement
  • 4.1.6.1 General
  • 4.1.6.2 Casing-Collar Logging
  • 4.1.6.3 Radioactive-Marker Logging
  • 4.1.6.4 Inclinometers
  • 4.2 Airborne and Spaced-Based Geodetic Surveys
  • 4.2.1 LiDAR
  • 4.2.1.1 Data Density
  • 4.2.1.2 Geodetic Control
  • 4.2.1.3 Quality Assurance/Quality Control
  • 4.2.2 Synthetic Aperture Radar Interferometry
  • 4.3 Horizontal Displacement
  • References
  • Book_5078_C005
  • CHAPTER 5 : Subsidence Analysis and Simulation
  • 5.1 Empirical Methods
  • 5.2 Quasi-Theoretical Approach
  • 5.2.1 Wadachi ' s (1940) Model
  • 5.2.2 Subsidence as a Function of Liquid Extraction
  • 5.2.3 Ratio of Subsidence to Head Decline
  • 5.2.4 Clay Content-Subsidence Relation
  • 5.2.5 Depth-Porosity Model
  • 5.3 Theoretical Approach
  • 5.3.1 Aquitard Drainage Model
  • 5.3.1.1 Conventional Groundwater Flow Theory
  • 5.3.1.2 Simulation of the Aquitard Drainage Model
  • 5.3.2 Poroelasticity Model
  • 5.3.2.1 Poroelasticity Theory
  • 5.3.2.2 Simulation of the Poroelasticity Model
  • 5.3.3 Other Constitutive Models
  • 5.3.4 Other Types of Subsidence Models
  • 5.3.4.1 Simple Subsidence Estimates
  • 5.3.4.2 Influence of Material within the Unpumped Overburden