Cargando…

Special functions and their applications /

Special functions are mathematical functions that have established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. This short text gives clear descriptions and explanations of the Gamma function, the Probability Int...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Koranga, Bipin Singh (Autor), Padaliya, Sanjay Kumar (Autor), Nautiyal, Vivek Kumar (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : River Publishers, 2021.
Colección:River Publishers series in mathematical and engineering sciences.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1289259031
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 211217s2021 xx ob 001 0 eng d
040 |a IEEEE  |b eng  |e rda  |e pn  |c IEEEE  |d EBLCP  |d OCLCO  |d OCLCQ  |d OCLCO  |d N$T  |d YDX  |d OCLCQ  |d UKAHL  |d SFB  |d OCLCQ  |d OCLCO 
020 |a 9788770226257  |q (electronic bk.) 
020 |a 8770226253  |q (electronic bk.) 
020 |z 8770226261 
020 |z 9788770226264 
035 |a (OCoLC)1289259031 
037 |a 9645392  |b IEEE 
050 4 |a QA351  |b .K67 2021 
082 0 4 |a 515/.5  |2 23 
049 |a UAMI 
100 1 |a Koranga, Bipin Singh,  |e author. 
245 1 0 |a Special functions and their applications /  |c Bipib Singh Koranga, Sanjay Kumar Padaliya, Vivek Kumar Nautiyal. 
264 1 |a [Place of publication not identified] :  |b River Publishers,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a River Publishers series in mathematical and engineering sciences 
504 |a Includes bibliographical references and index. 
520 |a Special functions are mathematical functions that have established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. This short text gives clear descriptions and explanations of the Gamma function, the Probability Integral and its related functions, Spherical Harmonics Theory, The Bessel function, Hermite polynomials and Laguerre polynomials. Each chapter finishes with a description of how the function is most commonly applied and a set of examples for the student to work through. 
505 0 |a Preface ix List of Tables xi List of Abbreviations xiii 1 The Gamma Function 1 1.1 Definition of Gamma Function 1 1.2 Gamma Function and Some Relations 3 1.3 The Logarithmic Derivative of the Gamma Function 6 1.4 Asymptotic Representation of the Gamma Function for Large z 10 1.5 Definite Integrals Related to the Gamma Function 11 1.6 Exercises 12 2 The Probability Integral and Related Functions 15 2.1 The Probability Integral and its Basic Properties 15 2.2 Asymptotic Representation of Probability Integral for Large z 17 2.3 The Probability Integral of Imaginary Argument 18 2.4 The Probability Fresnel Integrals 20 2.5 Application to Probability Theory 23 2.6 Application to the Theory of Heat Conduction 24 2.7 Application to the Theory of Vibrations 26 2.8 Exercises 28 3 Spherical Harmonics Theory 31 3.1 Introduction 31 3.2 The Hypergeometric Equation and its Series Solution 32 3.3 Legendre Functions 35 3.4 Integral Representations of the Legendre Functions 37 3.5 Some Relations Satisfied by the Legendre Functions 39 3.6 Workskian of Pairs of Solutions of Legendre's Equation 40 3.7 Recurrence Relations for the Legendre Functions 42 3.8 Associated Legendre Functions 44 3.9 Exercises 46 4 Bessel Function 49 4.1 Bessel Functions 49 4.2 Generating Function 54 4.3 Recurrence Relations 57 4.4 Orthonormality 59 4.5 Application to the Optical Fiber 60 4.6 Exercises 62 5 Hermite Polynomials 65 5.1 Hermite Functions 65 5.2 Generating Function 69 5.3 Recurrence Relations 70 5.4 Rodrigues Formula 73 5.5 Orthogonality and Normalilty 74 5.6 Application to the Simple Harmonic Oscillator 76 5.7 Exercises 78 6 Laguerre Polynomials 81 6.1 Laguerre Functions 81 6.2 Generating Function 85 6.3 Recurrence Relations 87 6.4 Rodrigues Formula 91 6.5 Orthonormality 92 6.6 Application to the Hydrogen Atom 94 6.7 Associated Laguerre Polynomials 98 6.7.1 Properties of Associated Laguerre Polynomials 102 6.8 Exercises 102 Bibliography 105 Index 107 About the Authors 109. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Functions, Special. 
650 6 |a Fonctions spéciales. 
650 7 |a Functions, Special  |2 fast 
700 1 |a Padaliya, Sanjay Kumar,  |e author. 
700 1 |a Nautiyal, Vivek Kumar,  |e author. 
776 0 8 |i Print version:  |a KORANGA, DR. BIPIN SINGH. PADALIYA, DR. SANJAY KUMAR. NAUTIYAL, DR. VIVEK KUMAR.  |t SPECIAL FUNCTIONS AND THEIR APPLICATIONS.  |d [Place of publication not identified] : RIVER PUBLISHERS, 2021  |z 8770226261  |w (OCoLC)1255690541 
830 0 |a River Publishers series in mathematical and engineering sciences. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=29002973  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH40583800 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL29002973 
938 |a EBSCOhost  |b EBSC  |n 3128860 
938 |a YBP Library Services  |b YANK  |n 18104723 
994 |a 92  |b IZTAP