Cargando…

Simulation of Automotive Radar Point Clouds in Standardized Frameworks

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Eder, Thomas
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Göttingen : Cuvillier Verlag, 2021.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1287131951
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 211204s2021 gw o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d YDX  |d SFB  |d OCLCQ  |d OCLCF  |d N$T  |d OCLCO  |d TMA  |d OCLCQ 
019 |a 1287104299  |a 1287126206  |a 1287200154 
020 |a 3736965362 
020 |a 9783736965362  |q (electronic bk.) 
029 1 |a AU@  |b 000073248848 
035 |a (OCoLC)1287131951  |z (OCoLC)1287104299  |z (OCoLC)1287126206  |z (OCoLC)1287200154 
050 4 |a TL158  |b .E347 2021 
082 0 4 |a 621.3  |2 23 
049 |a UAMI 
100 1 |a Eder, Thomas. 
245 1 0 |a Simulation of Automotive Radar Point Clouds in Standardized Frameworks  |h [electronic resource]. 
260 |a Göttingen :  |b Cuvillier Verlag,  |c 2021. 
300 |a 1 online resource (127 p.) 
500 |a Description based upon print version of record. 
505 0 |a Intro -- Chapter 1 Autonomous driving andsimulational challenges -- 1.1 Safety validation and simulative test drives -- 1.2 Principles of automotive radar sensors -- 1.3 Modeling and standardized simulationframeworks -- Chapter 2 State of research in automotiveradar modeling -- 2.1 Differentiation of various modeling levels -- 2.2 Ray-tracing in environments of high-fidelity -- 2.3 Models executable in standardized environments -- 2.4 Validation and verification of sensor models -- Chapter 3 Derivation of research questions,hypotheses and objectives 
505 8 |a 3.2 Stochastic radar models based on deepgenerative networks -- 3.3 Hybrid multipurpose approaches for radar sensormodels -- 3.4 Deficiencies of current validation criteria -- Chapter 4 Modeling challenges related to raycone tracing -- 4.1 The caustic distance and the angular beamexpansion -- 4.2 Estimating current errors in case of multiplereflections -- 4.3 Consequences and lower bounds for the numberof rays -- Chapter 5 Approaches to statistical radar pointcloud simulation -- 5.1 Statistical formulation of radar sensor modeling -- 5.2 Kernel density estimation and radar point clouds 
505 8 |a 5.3 Deep generative networks as sensor models -- 5.4 Comparison of learning capacities and itsconsequences -- Chapter 6 A hybrid modeling approach forradar point clouds -- 6.1 Tracing and catching rays as the baseline -- 6.2 Improvements to the ray casting approach -- 6.3 Capabilities for data-based optimization -- 6.4 Bottom line on the hybrid modeling approach -- Chapter 7 Validation based on statisticalhypothesis testing -- 7.1 Consistency of validation criterion -- 7.2 On the Kolmogorov-Smirnov test -- 7.3 Applications to radar sensor models 
505 8 |a 7.4 Retrospective and future validation challenges -- Chapter 8 Conclusion and prospectivechallenges -- 8.1 Recap of the radar point cloud simulation -- 8.2 Lessons learned and future recommendations -- Nomenclatur -- References -- Index 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Cloud computing  |x Law and legislation. 
650 7 |a Cloud computing  |x Law and legislation  |2 fast 
776 0 8 |i Print version:  |a Eder, Thomas  |t Simulation of Automotive Radar Point Clouds in Standardized Frameworks  |d Göttingen : Cuvillier Verlag,c2021  |z 9783736975361 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6820147  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6820147 
938 |a YBP Library Services  |b YANK  |n 302618770 
938 |a EBSCOhost  |b EBSC  |n 3110287 
994 |a 92  |b IZTAP