|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1287131951 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
211204s2021 gw o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d YDX
|d SFB
|d OCLCQ
|d OCLCF
|d N$T
|d OCLCO
|d TMA
|d OCLCQ
|
019 |
|
|
|a 1287104299
|a 1287126206
|a 1287200154
|
020 |
|
|
|a 3736965362
|
020 |
|
|
|a 9783736965362
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000073248848
|
035 |
|
|
|a (OCoLC)1287131951
|z (OCoLC)1287104299
|z (OCoLC)1287126206
|z (OCoLC)1287200154
|
050 |
|
4 |
|a TL158
|b .E347 2021
|
082 |
0 |
4 |
|a 621.3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Eder, Thomas.
|
245 |
1 |
0 |
|a Simulation of Automotive Radar Point Clouds in Standardized Frameworks
|h [electronic resource].
|
260 |
|
|
|a Göttingen :
|b Cuvillier Verlag,
|c 2021.
|
300 |
|
|
|a 1 online resource (127 p.)
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Intro -- Chapter 1 Autonomous driving andsimulational challenges -- 1.1 Safety validation and simulative test drives -- 1.2 Principles of automotive radar sensors -- 1.3 Modeling and standardized simulationframeworks -- Chapter 2 State of research in automotiveradar modeling -- 2.1 Differentiation of various modeling levels -- 2.2 Ray-tracing in environments of high-fidelity -- 2.3 Models executable in standardized environments -- 2.4 Validation and verification of sensor models -- Chapter 3 Derivation of research questions,hypotheses and objectives
|
505 |
8 |
|
|a 3.2 Stochastic radar models based on deepgenerative networks -- 3.3 Hybrid multipurpose approaches for radar sensormodels -- 3.4 Deficiencies of current validation criteria -- Chapter 4 Modeling challenges related to raycone tracing -- 4.1 The caustic distance and the angular beamexpansion -- 4.2 Estimating current errors in case of multiplereflections -- 4.3 Consequences and lower bounds for the numberof rays -- Chapter 5 Approaches to statistical radar pointcloud simulation -- 5.1 Statistical formulation of radar sensor modeling -- 5.2 Kernel density estimation and radar point clouds
|
505 |
8 |
|
|a 5.3 Deep generative networks as sensor models -- 5.4 Comparison of learning capacities and itsconsequences -- Chapter 6 A hybrid modeling approach forradar point clouds -- 6.1 Tracing and catching rays as the baseline -- 6.2 Improvements to the ray casting approach -- 6.3 Capabilities for data-based optimization -- 6.4 Bottom line on the hybrid modeling approach -- Chapter 7 Validation based on statisticalhypothesis testing -- 7.1 Consistency of validation criterion -- 7.2 On the Kolmogorov-Smirnov test -- 7.3 Applications to radar sensor models
|
505 |
8 |
|
|a 7.4 Retrospective and future validation challenges -- Chapter 8 Conclusion and prospectivechallenges -- 8.1 Recap of the radar point cloud simulation -- 8.2 Lessons learned and future recommendations -- Nomenclatur -- References -- Index
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Cloud computing
|x Law and legislation.
|
650 |
|
7 |
|a Cloud computing
|x Law and legislation
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Eder, Thomas
|t Simulation of Automotive Radar Point Clouds in Standardized Frameworks
|d Göttingen : Cuvillier Verlag,c2021
|z 9783736975361
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6820147
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6820147
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302618770
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3110287
|
994 |
|
|
|a 92
|b IZTAP
|