Cargando…

The Informed Company How to Build Modern Agile Data Stacks That Drive Winning Insights.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fowler, Dave
Otros Autores: David, Matthew C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • About This Book
  • Why Write This Book
  • Who This Book Is For
  • Who This Book Is Not For
  • Who Wrote the Book
  • Who Edited the Book
  • Influences
  • How This Book Was Written
  • How to Read This Book
  • Foreword
  • Introduction
  • Merging Business Context with Data Information
  • The Four Stages of Agile Data Organization
  • Stage 1 Source aka Siloed Data
  • Chapter 1 Starting with Source Data
  • Common Options for Analyzing Source Data
  • Chapter 2 The Need to Replicate Source Data
  • Replicate Sources
  • Create Read-OnlyAccess
  • Chapter 3 Source Data Best Practices
  • Keep a Complexity Wiki Page
  • Snippet Dictionary
  • Use a BI Product
  • Double Check Results
  • Keep Short Dashboards
  • Design Before Building
  • Stage 2 Data Lake aka Data Combined
  • Chapter 4 Why Build a Data Lake?
  • What Is a Data Lake?
  • Reasons to Build a Data Lake Summarized
  • Chapter 5 Choosing an Engine for the Data Lake
  • Modern Columnar Warehouse Engines
  • Modern Warehouse Engine Products
  • Database Engines
  • Recommendation
  • Chapter 6 Extract and Load (EL) Data
  • ETL versus ELT
  • EL/ETL Vendors
  • Extract Options
  • Load Options
  • Multiple Schemas
  • Other Extract and Load Routes
  • Chapter 7 Data Lake Security
  • Access in Central Place
  • Permission Tiers
  • Chapter 8 Data Lake Maintenance
  • Why SQL?
  • Data Sources
  • Performance
  • Upgrade Snippets to Views
  • Stage 3 Data Warehouse aka the Single Source of Truth
  • Chapter 9 The Power of Layers and Views
  • Make Readable Views
  • Layer Views on Views
  • Start with a Single View
  • Chapter 10 Staging Schemas
  • Orient to the Schemas
  • Pick a Table and Clean It
  • Other Staging Modeling Considerations
  • Building on Top of Staging Schemas
  • Chapter 11 Model Data with dbt
  • Version Control
  • Modularity and Reusability
  • Package Management.
  • Organizing Files
  • Macros
  • Incremental Tables
  • Testing
  • Chapter 12 Deploy Modeling Code
  • Branch Using Version Control Software
  • Commit Message
  • Test Locally
  • Code Review
  • Schedule Runs
  • Chapter 13 Implementing the Data Warehouse
  • Manage Dependencies
  • Combine Tables Within Schemas
  • Combine Tables Across Schemas
  • Keep the Grain Consistent
  • Create Business Metrics
  • Keeping Accurate History
  • Chapter 14 Managing Data Access
  • How to Secure Sensitive Data in the Data Warehouse
  • How to Secure Sensitive Data in a BI Tool
  • Chapter 15 Maintaining the Source of Truth
  • Track New Metrics
  • Deprecate Old Metrics
  • Deprecate Old Schemas
  • Resolve Conflicting Numbers
  • Handling Ongoing Requests and Ongoing Feedback
  • Updating Modeling Code
  • Manage Access
  • Tuning to Optimize
  • Code Review All Modeling
  • Maintenance Checklist
  • Stage 4 Data Marts aka Data Democratized
  • Chapter 16 Data Mart Implementation
  • Views on the Data Warehouse
  • Segment Tables
  • Access Update
  • Chapter 17 Data Mart Maintenance
  • Educate Team
  • Identifies Issues
  • Identify New Needs
  • Help Track Success
  • Chapter 18 Modern versus Traditional Data Stacks: What's Changed?
  • What's Changed?
  • Chapter 19 Row- versus Column-Oriented Database
  • Row-Oriented Databases
  • Column-Oriented Databases
  • Summary
  • Chapter 20 Style Guide Example
  • Simplify
  • Clean
  • Naming Conventions
  • Share It
  • Chapter 21 Building an SST Example
  • First Attempt-Same Tables with Prefixes
  • Second Attempt-Operational Schema (Source Agnostic)
  • Third Attempt-Application Separate, Other Sources Smashed
  • Less Planning, More Implementing
  • Acknowledgments and Contributions
  • Thank-yous
  • Index
  • EULA.