Cargando…

The Informed Company How to Build Modern Agile Data Stacks That Drive Winning Insights.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fowler, Dave
Otros Autores: David, Matthew C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2021.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1283860421
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 211106s2021 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d DST  |d OCLCQ  |d REDDC  |d OCLCO 
019 |a 1281986431 
020 |a 9781119748021 
020 |a 111974802X 
035 |a (OCoLC)1283860421  |z (OCoLC)1281986431 
050 4 |a QA76.9.D35  |b .F695 2022 
082 0 4 |a 658.40380285574 
049 |a UAMI 
100 1 |a Fowler, Dave. 
245 1 4 |a The Informed Company  |h [electronic resource] :  |b How to Build Modern Agile Data Stacks That Drive Winning Insights. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2021. 
300 |a 1 online resource (259 p.) 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright Page -- Contents -- About This Book -- Why Write This Book -- Who This Book Is For -- Who This Book Is Not For -- Who Wrote the Book -- Who Edited the Book -- Influences -- How This Book Was Written -- How to Read This Book -- Foreword -- Introduction -- Merging Business Context with Data Information -- The Four Stages of Agile Data Organization -- Stage 1 Source aka Siloed Data -- Chapter 1 Starting with Source Data -- Common Options for Analyzing Source Data -- Chapter 2 The Need to Replicate Source Data -- Replicate Sources -- Create Read-OnlyAccess -- Chapter 3 Source Data Best Practices -- Keep a Complexity Wiki Page -- Snippet Dictionary -- Use a BI Product -- Double Check Results -- Keep Short Dashboards -- Design Before Building -- Stage 2 Data Lake aka Data Combined -- Chapter 4 Why Build a Data Lake? -- What Is a Data Lake? -- Reasons to Build a Data Lake Summarized -- Chapter 5 Choosing an Engine for the Data Lake -- Modern Columnar Warehouse Engines -- Modern Warehouse Engine Products -- Database Engines -- Recommendation -- Chapter 6 Extract and Load (EL) Data -- ETL versus ELT -- EL/ETL Vendors -- Extract Options -- Load Options -- Multiple Schemas -- Other Extract and Load Routes -- Chapter 7 Data Lake Security -- Access in Central Place -- Permission Tiers -- Chapter 8 Data Lake Maintenance -- Why SQL? -- Data Sources -- Performance -- Upgrade Snippets to Views -- Stage 3 Data Warehouse aka the Single Source of Truth -- Chapter 9 The Power of Layers and Views -- Make Readable Views -- Layer Views on Views -- Start with a Single View -- Chapter 10 Staging Schemas -- Orient to the Schemas -- Pick a Table and Clean It -- Other Staging Modeling Considerations -- Building on Top of Staging Schemas -- Chapter 11 Model Data with dbt -- Version Control -- Modularity and Reusability -- Package Management. 
505 8 |a Organizing Files -- Macros -- Incremental Tables -- Testing -- Chapter 12 Deploy Modeling Code -- Branch Using Version Control Software -- Commit Message -- Test Locally -- Code Review -- Schedule Runs -- Chapter 13 Implementing the Data Warehouse -- Manage Dependencies -- Combine Tables Within Schemas -- Combine Tables Across Schemas -- Keep the Grain Consistent -- Create Business Metrics -- Keeping Accurate History -- Chapter 14 Managing Data Access -- How to Secure Sensitive Data in the Data Warehouse -- How to Secure Sensitive Data in a BI Tool -- Chapter 15 Maintaining the Source of Truth -- Track New Metrics -- Deprecate Old Metrics -- Deprecate Old Schemas -- Resolve Conflicting Numbers -- Handling Ongoing Requests and Ongoing Feedback -- Updating Modeling Code -- Manage Access -- Tuning to Optimize -- Code Review All Modeling -- Maintenance Checklist -- Stage 4 Data Marts aka Data Democratized -- Chapter 16 Data Mart Implementation -- Views on the Data Warehouse -- Segment Tables -- Access Update -- Chapter 17 Data Mart Maintenance -- Educate Team -- Identifies Issues -- Identify New Needs -- Help Track Success -- Chapter 18 Modern versus Traditional Data Stacks: What's Changed? -- What's Changed? -- Chapter 19 Row- versus Column-Oriented Database -- Row-Oriented Databases -- Column-Oriented Databases -- Summary -- Chapter 20 Style Guide Example -- Simplify -- Clean -- Naming Conventions -- Share It -- Chapter 21 Building an SST Example -- First Attempt-Same Tables with Prefixes -- Second Attempt-Operational Schema (Source Agnostic) -- Third Attempt-Application Separate, Other Sources Smashed -- Less Planning, More Implementing -- Acknowledgments and Contributions -- Thank-yous -- Index -- EULA. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Big data. 
650 0 |a Cloud computing. 
650 0 |a Data structures (Computer science) 
650 6 |a Données volumineuses. 
650 6 |a Infonuagique. 
650 6 |a Structures de données (Informatique) 
700 1 |a David, Matthew C. 
776 0 8 |i Print version:  |a Fowler, Dave  |t The Informed Company  |d Newark : John Wiley & Sons, Incorporated,c2021  |z 9781119748007 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6790673  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6790673 
994 |a 92  |b IZTAP