Cargando…

Big Data Analytics and Forecasting in Hospitality and Tourism

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Okumus, Fevzi
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bradford, West Yorkshire : Emerald Publishing Limited, 2021.
Colección:International Journal of Contemporary Hospitality Management Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1281957780
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 211030s2021 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d YDX  |d EBLCP  |d SFB  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1280392122  |a 1280462788  |a 1280600455  |a 1281978375 
020 |a 9781802625103 
020 |a 1802625100 
029 1 |a AU@  |b 000073108779 
035 |a (OCoLC)1281957780  |z (OCoLC)1280392122  |z (OCoLC)1280462788  |z (OCoLC)1280600455  |z (OCoLC)1281978375 
050 4 |a G155.A1  |b .B54 2021 
082 0 4 |a 910.68  |2 23 
049 |a UAMI 
100 1 |a Okumus, Fevzi. 
245 1 0 |a Big Data Analytics and Forecasting in Hospitality and Tourism  |h [electronic resource]. 
260 |a Bradford, West Yorkshire :  |b Emerald Publishing Limited,  |c 2021. 
300 |a 1 online resource (389 p.). 
490 1 |a International Journal of Contemporary Hospitality Management Ser. ;  |v v.6 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Guest editorial -- Tourism demand nowcasting using a LASSO-MIDAS model -- Forecasting daily attraction demand using big data from search engines and social media -- High-frequency forecasting from mobile devices' bigdata: an application to tourism destinations' crowdedness -- A segmented machine learning modeling approach of social media for predicting occupancy -- Which search queries are more powerful in tourism demand forecasting: searches via mobile device or PC? -- Timing matters: crisis severity and occupancy rate forecasts in social unrest periods 
505 8 |a Are environmental-related online reviews more helpful? A big data analytics approach -- Listening to your employees: analyzing opinions from online reviews of hotel companies -- Artificial intelligence for hospitality big data analytics: developing a prediction model of restaurant review helpfulness for customer decision-making -- Asymmetric relationship between customer sentiment and online hotel ratings: the moderating effects of review characteristics -- Toward travel pattern aware tourism region planning: a big data approach 
505 8 |a Extracting revisit intentions from social media big data: a rule-based classification model -- Spatial-temporal evolution patterns of hotels in China:1978-2018 -- Destination image through social media analytics and survey method -- Do the flipped impacts of hotels matter to the popularity of Airbnb? -- The decision tree for longer-stay hotel guest: the relationship between hotel booking determinants and geographical distance -- Using social media photos as a proxy to estimate the recreational value of (im)movable heritage: the Rubjerg Knude(Denmark) lighthouse 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Tourism  |x Management. 
650 0 |a Tourism  |x Marketing. 
650 7 |a Tourism  |x Management  |2 fast 
650 7 |a Tourism  |x Marketing  |2 fast 
758 |i has work:  |a Big Data Analytics and Forecasting in Hospitality and Tourism (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3QR7JYKvxYFw8YGYKtXFq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Okumus, Fevzi  |t Big Data Analytics and Forecasting in Hospitality and Tourism  |d Bradford, West Yorkshire : Emerald Publishing Limited,c2021 
830 0 |a International Journal of Contemporary Hospitality Management Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6788010  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6788010 
938 |a YBP Library Services  |b YANK  |n 17683998 
994 |a 92  |b IZTAP