Cargando…

Organic Electronics, Volume 2 Applications and Marketing.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nguyen, Thien-Phap
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Half-Title Page
  • Title Page
  • Copyright Page
  • Contents
  • Introduction
  • 1. Organic Light-Emitting Diodes
  • 1.1. Introduction
  • 1.2. Reminders on optics
  • 1.2.1. Photometry and radiometry
  • 1.2.2. Colors
  • 1.3. OLED operating principle
  • 1.3.1. P-N junction LED
  • 1.3.2. OLEDs
  • 1.4. OLED applications
  • 1.4.1. OLEDs for lighting
  • 1.4.2. OLEDs for display
  • 1.4.3. OLEDs for automotive equipment
  • 1.5. Conclusion
  • 2. Organic Solar Cells
  • 2.1. Introduction
  • 2.2. Solar spectrum
  • 2.3. Operating principle
  • 2.3.1. Absorption of photons
  • 2.3.2. Diffusion of excitons
  • 2.3.3. Dissociation of excitons
  • 2.3.4. Diffusion of carriers to electrodes
  • 2.3.5. Collection of charges
  • 2.3.6. Process optimization for an organic solar cell
  • 2.4. Characteristic parameters of solar cells
  • 2.4.1. Current-voltage characteristics
  • 2.4.2. Photovoltaic parameters of a solar cell
  • 2.4.3. Efficiency
  • 2.5. Organic materials
  • 2.5.1. Electron donor materials
  • 2.5.2. Electron acceptor materials
  • 2.6. P3HT:PCBM
  • 2.7. Perovskite
  • 2.7.1. Structure of perovskite
  • 2.7.2. Solar cells based on perovskite
  • 2.7.3. Conversion efficiency
  • 2.7.4. Problems with the use of perovskite solar cells
  • 2.8. Solar cells based on organic, hybrid and silicon materials
  • 2.9. Strategies to improve the performance of organic and hybrid solar cells
  • 2.9.1. Low bandgap semiconductors
  • 2.9.2. Tandem cells
  • 2.10. Conclusion
  • 3. Organic Transistors
  • 3.1. Introduction
  • 3.2. Operating principle
  • 3.2.1. Transistor effect
  • 3.2.2. Field effect
  • 3.3. Principal OFET parameters
  • 3.3.1. Charge carrier mobility
  • 3.3.2. Contact resistance
  • 3.3.3. Hysteresis
  • 3.3.4. Gate-bias stress effects, VGS
  • 3.3.5. Ion/Ioff current ratio
  • 3.4. Materials
  • 3.4.1. Metals used for electrodes
  • 3.4.2. Dielectric materials
  • 3.4.3. Active organic materials
  • 3.5. Ambipolar transistors and semiconductors
  • 3.5.1. Ambipolar semiconductors
  • 3.5.2. Ambipolar transistors
  • 3.6. Light-emitting transistors
  • 3.6.1. Ambipolar OLETs with BHJ structure
  • 3.6.2. Single-semiconductor ambipolar OLETs
  • 3.6.3. Vertical OLETs
  • 3.7. OFET applications
  • 3.7.1. RFID tags
  • 3.7.2. Sensors
  • 3.7.3. Active-matrix displays
  • 3.8. Conclusion
  • 4. The Brabec Triangle
  • 4.1. Introduction
  • 4.2. Device efficiency
  • 4.2.1. OLED efficiency
  • 4.2.2. Solar cell efficiency
  • 4.2.3. OFET performance
  • 4.3. Stability of materials and devices
  • 4.3.1. Process of degradation of organic materials and devices
  • 4.3.2. Classification of device degradation mechanisms
  • 4.3.3. Degradation of OFETs
  • 4.3.4. Measuring the lifetime of devices
  • 4.4. Organic device production cost and marketing
  • 4.4.1. Production of OLEDs
  • 4.4.2. Production of OSCs
  • 4.4.3. Production of OFETs
  • 4.5. Synthesis on Brabec's criteria
  • 4.6. Environmental dimension
  • 4.6.1. Life-cycle assessment