Organic Electronics, Volume 2 Applications and Marketing.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Introduction
- 1. Organic Light-Emitting Diodes
- 1.1. Introduction
- 1.2. Reminders on optics
- 1.2.1. Photometry and radiometry
- 1.2.2. Colors
- 1.3. OLED operating principle
- 1.3.1. P-N junction LED
- 1.3.2. OLEDs
- 1.4. OLED applications
- 1.4.1. OLEDs for lighting
- 1.4.2. OLEDs for display
- 1.4.3. OLEDs for automotive equipment
- 1.5. Conclusion
- 2. Organic Solar Cells
- 2.1. Introduction
- 2.2. Solar spectrum
- 2.3. Operating principle
- 2.3.1. Absorption of photons
- 2.3.2. Diffusion of excitons
- 2.3.3. Dissociation of excitons
- 2.3.4. Diffusion of carriers to electrodes
- 2.3.5. Collection of charges
- 2.3.6. Process optimization for an organic solar cell
- 2.4. Characteristic parameters of solar cells
- 2.4.1. Current-voltage characteristics
- 2.4.2. Photovoltaic parameters of a solar cell
- 2.4.3. Efficiency
- 2.5. Organic materials
- 2.5.1. Electron donor materials
- 2.5.2. Electron acceptor materials
- 2.6. P3HT:PCBM
- 2.7. Perovskite
- 2.7.1. Structure of perovskite
- 2.7.2. Solar cells based on perovskite
- 2.7.3. Conversion efficiency
- 2.7.4. Problems with the use of perovskite solar cells
- 2.8. Solar cells based on organic, hybrid and silicon materials
- 2.9. Strategies to improve the performance of organic and hybrid solar cells
- 2.9.1. Low bandgap semiconductors
- 2.9.2. Tandem cells
- 2.10. Conclusion
- 3. Organic Transistors
- 3.1. Introduction
- 3.2. Operating principle
- 3.2.1. Transistor effect
- 3.2.2. Field effect
- 3.3. Principal OFET parameters
- 3.3.1. Charge carrier mobility
- 3.3.2. Contact resistance
- 3.3.3. Hysteresis
- 3.3.4. Gate-bias stress effects, VGS
- 3.3.5. Ion/Ioff current ratio
- 3.4. Materials
- 3.4.1. Metals used for electrodes
- 3.4.2. Dielectric materials
- 3.4.3. Active organic materials
- 3.5. Ambipolar transistors and semiconductors
- 3.5.1. Ambipolar semiconductors
- 3.5.2. Ambipolar transistors
- 3.6. Light-emitting transistors
- 3.6.1. Ambipolar OLETs with BHJ structure
- 3.6.2. Single-semiconductor ambipolar OLETs
- 3.6.3. Vertical OLETs
- 3.7. OFET applications
- 3.7.1. RFID tags
- 3.7.2. Sensors
- 3.7.3. Active-matrix displays
- 3.8. Conclusion
- 4. The Brabec Triangle
- 4.1. Introduction
- 4.2. Device efficiency
- 4.2.1. OLED efficiency
- 4.2.2. Solar cell efficiency
- 4.2.3. OFET performance
- 4.3. Stability of materials and devices
- 4.3.1. Process of degradation of organic materials and devices
- 4.3.2. Classification of device degradation mechanisms
- 4.3.3. Degradation of OFETs
- 4.3.4. Measuring the lifetime of devices
- 4.4. Organic device production cost and marketing
- 4.4.1. Production of OLEDs
- 4.4.2. Production of OSCs
- 4.4.3. Production of OFETs
- 4.5. Synthesis on Brabec's criteria
- 4.6. Environmental dimension
- 4.6.1. Life-cycle assessment