Machine Learning Applications in Electromagnetics and Antenna Array Processing
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Norwood :
Artech House,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 3.4 Kernel Framework for Estimating Signal Models
- 3.4.1 Primal Signal Models
- 3.4.2 RKHS Signal Models
- 3.4.3 Dual Signal Models
- References
- 4 The Basic Concepts of Deep Learning
- 4.1 Introduction
- 4.2 Feedforward Neural Networks
- 4.2.1 Structure of a Feedforward Neural Network
- 4.2.2 Training Criteria and Activation Functions
- 4.2.3 ReLU for Hidden Units
- 4.2.4 Training with the BP Algorithm
- 4.3 Manifold Learning and Embedding Spaces
- 4.3.1 Manifolds, Embeddings, and Algorithms
- 4.3.2 Autoencoders
- 4.3.3 Deep Belief Networks
- References
- 5 Deep Learning Structures
- 5.1 Introduction
- 5.2 Stacked Autoencoders
- 5.3 Convolutional Neural Networks
- 5.4 Recurrent Neural Networks
- 5.4.1 Basic Recurrent Neural Network
- 5.4.2 Training a Recurrent Neural Network
- 5.4.3 Long Short-Term Memory Network
- 5.5 Variational Autoencoders
- References
- 6 Direction of Arrival Estimation
- 6.1 Introduction
- 6.2 Fundamentals of DOA Estimation
- 6.3 Conventional DOA Estimation
- 6.3.1 Subspace Methods
- 6.3.2 Rotational Invariance Technique
- 6.4 Statistical Learning Methods
- 6.4.1 Steering Field Sampling
- 6.4.2 Support Vector Machine MuSiC
- 6.5 Neural Networks for Direction of Arrival
- 6.5.1 Feature Extraction
- 6.5.2 Backpropagation Neural Network
- 6.5.3 Forward-Propagation Neural Network
- 6.5.4 Autoencoder Framework for DOA Estimation with Array Imperfections
- 6.5.5 Deep Learning for DOA Estimation with Random Arrays
- References
- 7 Beamforming
- 7.1 Introduction
- 7.2 Fundamentals of Beamforming
- 7.2.1 Analog Beamforming
- 7.2.2 Digital Beamforming/Precoding
- 7.2.3 Hybrid Beamforming
- 7.3 Conventional Beamforming
- 7.3.1 Beamforming with Spatial Reference
- 7.3.2 Beamforming with Temporal Reference
- 7.4 Support Vector Machine Beamformer
- 7.5 Beamforming with Kernels.
- 7.5.1 Kernel Array Processors with Temporal Reference
- 7.5.2 Kernel Array Processor with Spatial Reference
- 7.6 RBF NN Beamformer
- 7.7 Hybrid Beamforming with Q-Learning
- References
- 8 Computational Electromagnetics
- 8.1 Introduction
- 8.2 Finite-Difference Time Domain
- 8.2.1 Deep Learning Approach
- 8.3 Finite-Difference Frequency Domain
- 8.3.1 Deep Learning Approach
- 8.4 Finite Element Method
- 8.4.1 Deep Learning Approach
- 8.5 Inverse Scattering
- 8.5.1 Nonlinear Electromagnetic Inverse Scattering Using DeepNIS
- References
- 9 Reconfigurable Antennas and Cognitive Radio
- 9.1 Introduction
- 9.2 Basic Cognitive Radio Architecture
- 9.3 Reconfiguration Mechanisms in Reconfigurable Antennas
- 9.4 Examples
- 9.4.1 Reconfigurable Fractal Antennas
- 9.4.2 Pattern Reconfigurable Microstrip Antenna
- 9.4.3 Star Reconfigurable Antenna
- 9.4.4 Reconfigurable Wideband Antenna
- 9.4.5 Frequency Reconfigurable Antenna
- 9.5 Machine Learning Implementation on Hardware
- 9.6 Conclusion
- References
- About the Authors
- Index.