Cargando…

Machine Learning Applications in Electromagnetics and Antenna Array Processing

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Martínez-Ramón, Manel
Otros Autores: Gupta, Arjun, Rojo-Álvarez, José Luis
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Norwood : Artech House, 2021.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1262374049
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 210731s2021 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d EBLCP  |d LOA  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781630817763 
020 |a 1630817767 
035 |a (OCoLC)1262374049 
050 4 |a Q325.5 
082 0 4 |a 006.31 
049 |a UAMI 
100 1 |a Martínez-Ramón, Manel. 
245 1 0 |a Machine Learning Applications in Electromagnetics and Antenna Array Processing  |h [electronic resource]. 
260 |a Norwood :  |b Artech House,  |c 2021. 
300 |a 1 online resource (349 p.) 
500 |a Description based upon print version of record. 
505 8 |a 3.4 Kernel Framework for Estimating Signal Models -- 3.4.1 Primal Signal Models -- 3.4.2 RKHS Signal Models -- 3.4.3 Dual Signal Models -- References -- 4 The Basic Concepts of Deep Learning -- 4.1 Introduction -- 4.2 Feedforward Neural Networks -- 4.2.1 Structure of a Feedforward Neural Network -- 4.2.2 Training Criteria and Activation Functions -- 4.2.3 ReLU for Hidden Units -- 4.2.4 Training with the BP Algorithm -- 4.3 Manifold Learning and Embedding Spaces -- 4.3.1 Manifolds, Embeddings, and Algorithms -- 4.3.2 Autoencoders -- 4.3.3 Deep Belief Networks -- References -- 5 Deep Learning Structures -- 5.1 Introduction -- 5.2 Stacked Autoencoders -- 5.3 Convolutional Neural Networks -- 5.4 Recurrent Neural Networks -- 5.4.1 Basic Recurrent Neural Network -- 5.4.2 Training a Recurrent Neural Network -- 5.4.3 Long Short-Term Memory Network -- 5.5 Variational Autoencoders -- References -- 6 Direction of Arrival Estimation -- 6.1 Introduction -- 6.2 Fundamentals of DOA Estimation -- 6.3 Conventional DOA Estimation -- 6.3.1 Subspace Methods -- 6.3.2 Rotational Invariance Technique -- 6.4 Statistical Learning Methods -- 6.4.1 Steering Field Sampling -- 6.4.2 Support Vector Machine MuSiC -- 6.5 Neural Networks for Direction of Arrival -- 6.5.1 Feature Extraction -- 6.5.2 Backpropagation Neural Network -- 6.5.3 Forward-Propagation Neural Network -- 6.5.4 Autoencoder Framework for DOA Estimation with Array Imperfections -- 6.5.5 Deep Learning for DOA Estimation with Random Arrays -- References -- 7 Beamforming -- 7.1 Introduction -- 7.2 Fundamentals of Beamforming -- 7.2.1 Analog Beamforming -- 7.2.2 Digital Beamforming/Precoding -- 7.2.3 Hybrid Beamforming -- 7.3 Conventional Beamforming -- 7.3.1 Beamforming with Spatial Reference -- 7.3.2 Beamforming with Temporal Reference -- 7.4 Support Vector Machine Beamformer -- 7.5 Beamforming with Kernels. 
505 8 |a 7.5.1 Kernel Array Processors with Temporal Reference -- 7.5.2 Kernel Array Processor with Spatial Reference -- 7.6 RBF NN Beamformer -- 7.7 Hybrid Beamforming with Q-Learning -- References -- 8 Computational Electromagnetics -- 8.1 Introduction -- 8.2 Finite-Difference Time Domain -- 8.2.1 Deep Learning Approach -- 8.3 Finite-Difference Frequency Domain -- 8.3.1 Deep Learning Approach -- 8.4 Finite Element Method -- 8.4.1 Deep Learning Approach -- 8.5 Inverse Scattering -- 8.5.1 Nonlinear Electromagnetic Inverse Scattering Using DeepNIS -- References -- 9 Reconfigurable Antennas and Cognitive Radio -- 9.1 Introduction -- 9.2 Basic Cognitive Radio Architecture -- 9.3 Reconfiguration Mechanisms in Reconfigurable Antennas -- 9.4 Examples -- 9.4.1 Reconfigurable Fractal Antennas -- 9.4.2 Pattern Reconfigurable Microstrip Antenna -- 9.4.3 Star Reconfigurable Antenna -- 9.4.4 Reconfigurable Wideband Antenna -- 9.4.5 Frequency Reconfigurable Antenna -- 9.5 Machine Learning Implementation on Hardware -- 9.6 Conclusion -- References -- About the Authors -- Index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
700 1 |a Gupta, Arjun. 
700 1 |a Rojo-Álvarez, José Luis. 
758 |i has work:  |a Machine learning applications in electromagnetics and antenna array processing (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGHQBkrwCVfKGDJxcRBfpX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Martínez-Ramón, Manel  |t Machine Learning Applications in Electromagnetics and Antenna Array Processing  |d Norwood : Artech House,c2021  |z 9781630817756 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6683918  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6683918 
994 |a 92  |b IZTAP