|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1259323033 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
210703s2021 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d YDX
|d EBLCP
|d LIV
|d LOA
|d OCLCF
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1257705396
|a 1258217017
|
020 |
|
|
|a 9781683926658
|
020 |
|
|
|a 168392665X
|
020 |
|
|
|a 9781683926641
|q (electronic bk.)
|
020 |
|
|
|a 1683926641
|q (electronic bk.)
|
020 |
|
|
|z 1683926668
|
020 |
|
|
|z 9781683926665
|
029 |
1 |
|
|a AU@
|b 000072106314
|
035 |
|
|
|a (OCoLC)1259323033
|z (OCoLC)1257705396
|z (OCoLC)1258217017
|
050 |
1 |
4 |
|a QA76.73.P98
|b .F67 2021
|
082 |
0 |
4 |
|a 005.133
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Fortino, Andres.
|
245 |
1 |
0 |
|a Text Analytics for Business Decisions
|h [electronic resource] :
|b A Case Study Approach.
|
260 |
|
|
|a Bloomfield :
|b Mercury Learning & Information,
|c 2021.
|
300 |
|
|
|a 1 online resource (332 p.)
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Intro -- Contents -- Preface -- On the Companion Files -- Acknowledgements -- Chapter 1 : Framing Analytical Questions -- Data is the New Oil -- The World of the Business Data Analyst -- How Does Data Analysis Relate to Decision Making? -- How Do We Frame Analytical Questions? -- What are the Characteristics of Well-framed Analytical Questions? -- Exercise 1.1 -- Case Study Using Dataset K: Titanic Disaster -- What are Some Examples of Text-Based Analytical Questions? -- Additional Case Study Using Dataset J: Remote Learning Student Survey -- References -- Chapter 2 : Analytical Tool Sets
|
505 |
8 |
|
|a Tool Sets for Text Analytics -- Excel -- Microsoft Word -- Adobe Acrobat -- SAS JMP -- R and RStudio -- Voyant -- Java -- Stanford Named Entity Recognizer (NER) -- Topic Modeling Tool -- References -- Chapter 3 : Text Data Sources and Formats -- Sources and Formats of Text Data -- Social Media Data -- Customer opinion data from commercial sites -- Email -- Documents -- Surveys -- Websites -- Chapter 4 : Preparing the Data File -- What is Data Shaping? -- The Flat File Format -- Shaping the Text Variable in a Table -- Bag-of-Words Representation -- Single Text Files
|
505 |
8 |
|
|a Exercise 4.1 -- Case Study Using Dataset L: Resumes -- Exercise 4.2 -- Case Study Using Dataset D: Occupation Descriptions -- Additional Exercise 4.3 -- Case Study Using Dataset I: NAICS Codes -- Aggregating Across Rows and Columns -- Exercise 4.4 -- Case Study Using Dataset D: Occupation Descriptions -- Additional Advanced Exercise 4.5 -- Case Study Using Dataset E: Large Data Files -- Additional Advanced Exercise 4.6 -- Case Study Using Dataset F: The Federalist Papers -- References -- Chapter 5 : Word Frequency Analysis -- What is Word Frequency Analysis?
|
505 |
8 |
|
|a How Does It Apply to Text Business Data Analysis? -- Exercise 5.1 -- Case Study Using Dataset A: Training Survey -- Exercise 5.2 -- Case Study Using Dataset D: Job Descriptions -- Exercise 5.3 -- Case Study Using Dataset C: Product Reviews -- Additional Exercise 5.4 -- Case Study Using Dataset B: Consumer Complaints -- Chapter 6 : Keyword Analysis -- Exercise 6.1 -- Case Study Using Dataset D: Resume and Job Description -- Exercise 6.2 -- Case Study Using Dataset G: University Curriculum -- Exercise 6.3 -- Case Study Using Dataset C: Product Reviews
|
505 |
8 |
|
|a Additional Exercise 6.4 -- Case Study Using Dataset B: Customer Complaints -- Chapter 7 : Sentiment Analysis -- What is Sentiment Analysis? -- Exercise 7.1 -- Case Study Using Dataset C: Product Reviews -- Rubbermaid -- Exercise 7.2 -- Case Study Using Dataset C: Product Reviews-Windex -- Exercise 7.3 -- Case Study Using Dataset C: Product Reviews-Both Brands -- Chapter 8 : Visualizing Text Data -- What Is Data Visualization Used For? -- Exercise 8.1 -- Case Study Using Dataset A: Training Survey -- Exercise 8.2 -- Case Study Using Dataset B: Consumer Complaints
|
505 |
8 |
|
|a Exercise 8.3 -- Case Study Using Dataset C: Product Reviews
|
520 |
|
|
|a This book helps for business analysts who wish to increase their skills in extracting answers for text data in order to support business decision making. --
|c Edited summary from book.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Text processing (Computer science)
|
650 |
|
0 |
|a Business--Decision making--Data processing.
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
6 |
|a Traitement de texte.
|
650 |
|
7 |
|a Business
|x Decision making
|x Data processing
|2 fast
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Text processing (Computer science)
|2 fast
|
758 |
|
|
|i has work:
|a Text Analytics for Business Decisions (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCXJYDmcwg7RvvyPDBgMkjC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Fortino, Andres
|t Text Analytics for Business Decisions
|d Bloomfield : Mercury Learning & Information,c2021
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6647712
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH41156955
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6647712
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302286822
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 17517173
|
994 |
|
|
|a 92
|b IZTAP
|