Algebra and Applications 1 Non-Associative Algebras and Categories.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Foreword
- 1 Jordan Superalgebras
- 1.1. Introduction
- 1.2. Tits-Kantor-Koecher construction
- 1.3. Basic examples (classical superalgebras)
- 1.4. Brackets
- 1.5. Cheng-Kac superalgebras
- 1.6. Finite dimensional simple Jordan superalgebras
- 1.6.1. Case F is algebraically closed and char F = 0
- 1.6.2. Case char F = p > 2, the even part J0̄ is semisimple
- 1.6.3. Case char F = p > 2, the even part J0̄ is not semisimple
- 1.6.4. Non-unital simple Jordan superalgebras
- 1.7. Finite dimensional representations
- 1.7.1. Superalgebras of rank ≥ 3
- 1.7.2. Superalgebras of rank ≤ 2
- 1.8. Jordan superconformal algebras
- 1.9. References
- 2 Composition Algebras
- 2.1. Introduction
- 2.2. Quaternions and octonions
- 2.2.1. Quaternions
- 2.2.2. Rotations in three(and four-) dimensional space
- 2.2.3. Octonions
- 2.3. Unital composition algebras
- 2.3.1. The Cayley-Dickson doubling process and the generalized Hurwitz theorem
- 2.3.2. Isotropic Hurwitz algebras
- 2.4. Symmetric composition algebras
- 2.5. Triality
- 2.6. Concluding remarks
- 2.7. Acknowledgments
- 2.8. References
- 3 Graded-Division Algebras
- 3.1. Introduction
- 3.2. Background on gradings
- 3.2.1. Gradings induced by a group homomorphism
- 3.2.2. Weak isomorphism and equivalence
- 3.2.3. Basic properties of division gradings
- 3.2.4. Graded presentations of associative algebras
- 3.2.5. Tensor products of division gradings
- 3.2.6. Loop construction
- 3.2.7. Another construction of graded-simple algebras
- 3.3. Graded-division algebras over algebraically closed fields
- 3.4. Real graded-division associative algebras
- 3.4.1. Simple graded-division algebras
- 3.4.2. Pauli gradings
- 3.4.3. Commutative case
- 3.4.4. Non-commutative graded-division algebras with one-dimensional homogeneous components
- 3.4.5. Equivalence classes of graded-division algebras with one-dimensional homogeneous components
- 3.4.6. Graded-division algebras with non-central two-dimensional identity components
- 3.4.7. Graded-division algebras with four-dimensional identity components
- 3.4.8. Classification of real graded-division algebras, up to isomorphism
- 3.5. Real loop algebras with a non-split centroid
- 3.6. Alternative algebras
- 3.6.1. Cayley-Dickson doubling process
- 3.6.2. Gradings on octonion algebras
- 3.6.3. Graded-simple real alternative algebras
- 3.6.4. Graded-division real alternative algebras
- 3.7. Gradings of fields
- 3.8. References
- 4 Non-associative C*-algebras
- 4.1. Introduction
- 4.2. JB-algebras
- 4.3. The non-associative Vidav-Palmer and Gelfand-Naimark theorems
- 4.4. JB*-triples
- 4.5. Past, present and future of non-associative C*-algebras
- 4.6. Acknowledgments
- 4.7. References
- 5 Structure of H -algebras
- 5.1. Introduction
- 5.2. Preliminaries: aspects of the general theory
- 5.3. Ultraproducts of H -algebras