Machine Learning for Healthcare Applications
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Series Page
- Title Page
- Copyright Page
- Contents
- Preface
- Part 1: INTRODUCTION TO INTELLIGENTHEALTHCARE SYSTEMS
- 1 Innovation on Machine Learning in Healthcare Services-An Introduction
- 1.1 Introduction
- 1.2 Need for Change in Healthcare
- 1.3 Opportunities of Machine Learning in Healthcare
- 1.4 Healthcare Fraud
- 1.4.1 Sorts of Fraud in Healthcare
- 1.4.2 Clinical Service Providers
- 1.4.3 Clinical Resource Providers
- 1.4.4 Protection Policy Holders
- 1.4.5 Protection Policy Providers
- 1.5 Fraud Detection and Data Mining in Healthcare
- 1.5.1 Data Mining Supervised Methods
- 1.5.2 Data Mining Unsupervised Methods
- 1.6 Common Machine Learning Applications in Healthcare
- 1.6.1 Multimodal Machine Learning for Data Fusion in Medical Imaging
- 1.6.2 Machine Learning in Patient Risk Stratification
- 1.6.3 Machine Learning in Telemedicine
- 1.6.4 AI (ML) Application in Sedate Revelation
- 1.6.5 Neuroscience and Image Computing
- 1.6.6 Cloud Figuring Systems in Building AI-Based Healthcare
- 1.6.7 Applying Internet of Things and Machine Learning for Personalized Healthcare
- 1.6.8 Machine Learning in Outbreak Prediction
- 1.7 Conclusion
- References
- Part 2: MACHINE LEARNING/DEEP LEARNINGBASEDMODEL DEVELOPMENT
- 2 A Framework for Health Status Estimation Based on Daily Life Activities Data Using Machine Learning Techniques
- 2.1 Introduction
- 2.1.1 Health Status of an Individual
- 2.1.2 Activities and Measures of an Individual
- 2.1.3 Traditional Approach to Predict Health Status
- 2.2 Background
- 2.3 Problem Statement
- 2.4 Proposed Architecture
- 2.4.1 Pre-Processing
- 2.4.2 Phase-I
- 2.4.3 Phase-II
- 2.4.4 Dataset Generation
- 2.4.5 Pre-Processing
- 2.5 Experimental Results
- 2.5.1 Performance Metrics
- 2.6 Conclusion
- References
- 3 Study of Neuromarketing With EEG Signals and Machine Learning Techniques
- 3.1 Introduction
- 3.1.1 Why BCI
- 3.1.2 Human-Computer Interfaces
- 3.1.3 What is EEG
- 3.1.4 History of EEG
- 3.1.5 About Neuromarketing
- 3.1.6 About Machine Learning
- 3.2 Literature Survey
- 3.3 Methodology
- 3.3.1 Bagging Decision Tree Classifier
- 3.3.2 Gaussian Naïve Bayes Classifier
- 3.3.3 Kernel Support Vector Machine (Sigmoid)
- 3.3.4 Random Decision Forest Classifier
- 3.4 System Setup & Design
- 3.4.1 Pre-Processing & Feature Extraction
- 3.4.2 Dataset Description
- 3.5 Result
- 3.5.1 Individual Result Analysis
- 3.5.2 Comparative Results Analysis
- 3.6 Conclusion
- References
- 4 An Expert System-Based Clinical Decision Support System for Hepatitis-B Prediction & Diagnosis
- 4.1 Introduction
- 4.2 Outline of Clinical DSS
- 4.2.1 Preliminaries
- 4.2.2 Types of Clinical DSS
- 4.2.3 Non-Knowledge-Based Decision Support System (NK-DSS)
- 4.2.4 Knowledge-Based Decision Support System (K-DSS)
- 4.2.5 Hybrid Decision Support System (H-DSS)
- 4.2.6 DSS Architecture