|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_on1243532832 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
210327s2021 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d DG1
|d OCLCO
|d YDX
|d UKAHL
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d UPM
|d OCLCQ
|d OCLCO
|d WSU
|d OCLCL
|
019 |
|
|
|a 1242577731
|
020 |
|
|
|a 9781119818298
|q (electronic bk. ;
|q oBook)
|
020 |
|
|
|a 111981829X
|q (electronic bk. ;
|q oBook)
|
020 |
|
|
|a 9781119818274
|
020 |
|
|
|a 1119818273
|
020 |
|
|
|z 9781789450217
|
020 |
|
|
|z 1789450217
|
029 |
1 |
|
|a AU@
|b 000069138768
|
035 |
|
|
|a (OCoLC)1243532832
|z (OCoLC)1242577731
|
050 |
|
4 |
|a TK7895.E42
|
082 |
0 |
4 |
|a 006.2/2
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Multi-processor system-on-chip.
|n 1,
|p Architectures /
|c coordinated by Liliana Andrade, Frédéric Rousseau.
|
246 |
3 |
0 |
|a Architectures
|
260 |
|
|
|a London :
|b ISTE, Ltd. ;
|a Hoboken :
|b Wiley,
|c 2021.
|
300 |
|
|
|a 1 online resource (321 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Half-Title Page -- Dedication -- Title Page -- Copyright Page -- Contents -- Foreword -- Acknowledgments -- PART 1: Processors -- 1 Processors for the Internet of Things -- 1.1. Introduction -- 1.2. Versatile processors for low-power IoT edge devices -- 1.2.1. Control processing, DSP and machine learning -- 1.2.2. Configurability and extensibility -- 1.3. Machine learning inference -- 1.3.1. Requirements for low/mid-end machine learning inference -- 1.3.2. Processor capabilities for low-power machine learning inference -- 1.3.3. A software library for machine learning inference
|
505 |
8 |
|
|a 1.3.4. Example machine learning applications and benchmarks -- 1.4. Conclusion -- 1.5. References -- 2 A Qualitative Approach to Many-core Architecture -- 2.1. Introduction -- 2.2. Motivations and context -- 2.2.1. Many-core processors -- 2.2.2. Machine learning inference -- 2.2.3. Application requirements -- 2.3. The MPPA3 many-core processor -- 2.3.1. Global architecture -- 2.3.2. Compute cluster -- 2.3.3. VLIW core -- 2.3.4. Coprocessor -- 2.4. The MPPA3 software environments -- 2.4.1. High-performance computing -- 2.4.2. KaNN code generator -- 2.4.3. High-integrity computing
|
505 |
8 |
|
|a 2.5. Conclusion -- 2.6. References -- 3 The Plural Many-core Architecture -- High Performance at Low Power -- 3.1. Introduction -- 3.2. Related works -- 3.3. Plural many-core architecture -- 3.4. Plural programming model -- 3.5. Plural hardware scheduler/synchronizer -- 3.6. Plural networks-on-chip -- 3.6.1. Scheduler NoC -- 3.6.2. Shared memory NoC -- 3.7. Hardware and software accelerators for the Plural architecture -- 3.8. Plural system software -- 3.9. Plural software development tools -- 3.10. Matrix multiplication algorithm on the Plural architecture
|
505 |
8 |
|
|a 4 ASIP-Based Multi-Processor Systems for an Efficient Implementation of CNNs -- 4.1. Introduction -- 4.2. Related works -- 4.3. ASIP architecture -- 4.4. Single-core scaling -- 4.5. MPSoC overview -- 4.6. NoC parameter exploration -- 4.7. Summary and conclusion -- 4.8. References -- PART 2: Memory -- 5 Tackling the MPSoC DataLocality Challenge -- 5.1. Motivation -- 5.2. MPSoC target platform -- 5.3. Related work -- 5.4. Coherence-on-demand: region-based cache coherence -- 5.4.1. RBCC versus global coherence -- 5.4.2. OS extensions for coherence-on-demand -- 5.4.3. Coherency region manager
|
505 |
8 |
|
|a 5.4.4. Experimental evaluations -- 5.4.5. RBCC and data placement -- 5.5. Near-memory acceleration -- 5.5.1. Near-memory synchronization accelerator -- 5.5.2. Near-memory queue management accelerator -- 5.5.3. Near-memory graph copy accelerator -- 5.5.4. Near-cache accelerator -- 5.6. The big picture -- 5.7. Conclusion -- 5.8. Acknowledgments -- 5.9. References -- 6 mMPU: Building a Memristor-based General-purpose In-memory Computation Architecture -- 6.1. Introduction -- 6.2. MAGIC NOR gate -- 6.3. In-memory algorithms for latency reduction -- 6.4. Synthesis and in-memory mapping methods
|
500 |
|
|
|a 6.4.1. SIMPLE.
|
520 |
|
|
|a A Multi-Processor System-on-Chip (MPSoC) is the key component for complex applications. These applications put huge pressure on memory, communication devices and computing units. This book, presented in two volumes - Architectures and Applications - therefore celebrates the 20th anniversary of MPSoC, an interdisciplinary forum that focuses on multi-core and multi-processor hardware and software systems. It is this interdisciplinarity which has led to MPSoC bringing together experts in these fields from around the world, over the last two decades.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Systems on a chip.
|
650 |
|
0 |
|a Multiprocessors.
|
650 |
|
6 |
|a Systèmes sur une puce.
|
650 |
|
6 |
|a Multiprocesseurs.
|
650 |
|
7 |
|a Multiprocessors
|2 fast
|
650 |
|
7 |
|a Systems on a chip
|2 fast
|
700 |
1 |
|
|a Andrade, Liliana.
|
700 |
1 |
|
|a Rousseau, Frédéric,
|d 1967-
|1 https://id.oclc.org/worldcat/entity/E39PCjwJWHpywWjBBg84w9rQbd
|
758 |
|
|
|i has work:
|a Multi-processor system-on-chip Architectures 1 (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGyjr66rjYJX6qQBwKf6rq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Andrade, Liliana.
|t Multi-Processor System-On-Chip 1.
|d Newark : John Wiley & Sons, Incorporated, ©2021
|z 9781789450217
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6523042
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH38415504
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6523042
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302001920
|
994 |
|
|
|a 92
|b IZTAP
|