Data Analytics in Bioinformatics A Machine Learning Perspective.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Series Page
- Title Page
- Copyright Page
- Contents
- Preface
- Acknowledgement
- Part 1: THE COMMENCEMENT OF MACHINE LEARNING SOLICITATION TO BIOINFORMATICS
- 1 Introduction to Supervised Learning
- 1.1 Introduction
- 1.2 Learning Process & its Methodologies
- 1.2.1 Supervised Learning
- 1.2.2 Unsupervised Learning
- 1.2.3 Reinforcement Learning
- 1.3 Classification and its Types
- 1.4 Regression
- 1.4.1 Logistic Regression
- 1.4.2 Difference between Linear & Logistic Regression
- 1.5 Random Forest
- 1.6 K-Nearest Neighbor
- 1.7 Decision Trees
- 1.8 Support Vector Machines
- 1.9 Neural Networks
- 1.10 Comparison of Numerical Interpretation
- 1.11 Conclusion & Future Scope
- References
- 2 Introduction to Unsupervised Learning in Bioinformatics
- 2.1 Introduction
- 2.2 Clustering in Unsupervised Learning
- 2.3 Clustering in Bioinformatics-Genetic Data
- 2.3.1 Microarray Analysis
- 2.3.2 Clustering Algorithms
- 2.3.3 Partition Algorithms
- 2.3.4 Hierarchical Clustering Algorithms
- 2.3.5 Density-Based Approach
- 2.3.6 Model-Based Approach
- 2.3.7 Grid-Based Clustering
- 2.3.8 Soft Clustering
- 2.4 Conclusion
- References
- 3 A Critical Review on the Application of Artificial Neural Network in Bioinformatics
- 3.1 Introduction
- 3.1.1 Different Areas of Application of Bioinformatics
- 3.1.2 Bioinformatics in Real World
- 3.1.3 Issues with Bioinformatics
- 3.2 Biological Datasets
- 3.3 Building Computational Model
- 3.3.1 Data Pre-Processing and its Necessity
- 3.3.2 Biological Data Classification
- 3.3.3 ML in Bioinformatics
- 3.3.4 Introduction to ANN
- 3.3.5 Application of ANN in Bioinformatics
- 3.3.6 Broadly Used Supervised Machine Learning Techniques
- 3.4 Literature Review
- 3.4.1 Comparative Analysis of ANN With Broadly Used Traditional ML Algorithms
- 3.5 Critical Analysis
- 3.6 Conclusion
- References
- Part 2: MACHINE LEARNING AND GENOMIC TECHNOLOGY, FEATURE SELECTION AND DIMENSIONALITY REDUCTION
- 4 Dimensionality Reduction Techniques: Principles, Benefits, and Limitations
- 4.1 Introduction
- 4.2 The Benefits and Limitations of Dimension Reduction Methods
- 4.3 Components of Dimension Reduction
- 4.3.1 Feature Selection
- 4.3.2 Feature Reduction
- 4.4 Methods of Dimensionality Reduction
- 4.4.1 Principal Component Analysis (PCA)
- 4.4.2 Missing Values Ratio (MVR)
- 4.4.3 Linear Discriminant Analysis (LDA)
- 4.4.4 Backward Feature Elimination (BFE)
- 4.4.5 Forward Feature Construction (FFC)
- 4.4.6 Independent Component Analysis (ICA)
- 4.4.7 Low Variance Filter (LVF)
- 4.4.8 High Correlation Filter
- 4.4.9 Random Forests (RF)/Ensemble Trees
- 4.4.10 t-Distributed Stochastic Neighbor Embedding (t-SNE)
- 4.4.11 Autoencoder
- 4.4.12 Factor Analysis (FA)
- 4.4.13 Uniform Manifold Approximation and Projection (UMAP)
- 4.4.14 Information Gain (IG)
- 4.4.15 Vector Quantization (VQ)
- 4.5 Conclusion
- References