Cargando…

An Introduction to Tensor Analysis

This is a short introduction to the topic of Tensor Analysis. A tensor is an entity which is represented in any coordinate system by an array of numbers called its components. The components change from coordinate system to coordinate in a systematic way described by rules. The arrays of numbers are...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Koranga, Bipin Singh
Otros Autores: Padaliya, Sanjay Kumar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Aalborg : River Publishers, 2021.
Colección:River Publishers Series in Mathematical and Engineering Sciences Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 EBOOKCENTRAL_on1229923914
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 210109s2021 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d LOA  |d OCLCO  |d OCLCF  |d OCLCQ  |d DXU  |d OCLCO  |d OCLCL 
019 |a 1378396910 
020 |a 9788770225809 
020 |a 877022580X 
035 |a (OCoLC)1229923914  |z (OCoLC)1378396910 
050 4 |a QA200  |b .K673 2020 
082 0 4 |a 515.724  |2 23 
049 |a UAMI 
100 1 |a Koranga, Bipin Singh. 
245 1 3 |a An Introduction to Tensor Analysis 
260 |a Aalborg :  |b River Publishers,  |c 2021. 
300 |a 1 online resource (128 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a River Publishers Series in Mathematical and Engineering Sciences Ser. 
588 0 |a Print version record. 
505 0 |a Intro -- AN INTRODUCTION TOTENSOR ANALYSIS -- Preface -- Syllabus -- Contents -- 1 Introduction -- 1.1 Symbols Multi-Suffix -- 1.2 Summation Convention -- References -- 2 Cartesian Tensor -- 2.1 Introduction -- 2.2 Transformation of Coordinates -- 2.3 Relations Between the Direction Cosines of Three Mutually Perpendicular Straight Lines -- 2.4 Transformation of Velocity Components -- 2.5 First-Order Tensors -- 2.6 Second-Order Tensors -- 2.7 Notation for Tensors -- 2.8 Algebraic Operations on Tensors -- 2.8.1 Sum and Difference of Tensors -- 2.8.2 Product of Tensors 
505 8 |a 2.9 Quotient Law of Tensors -- 2.10 Contraction Theorem -- 2.11 Symmetric and Skew-Symmetric Tensor -- 2.12 Alternate Tensor -- 2.13 Kronecker Tensor -- 2.14 Relation Between Alternate and Kronecker Tensors -- 2.15 Matrices and Tensors of First and Second Orders -- 2.16 Product of Two Matrices -- 2.17 Scalar and Vector Inner Product -- 2.17.1 Two Vectors -- 2.17.2 Scalar Product -- 2.17.3 Vector Product -- 2.18 Tensor Fields -- 2.18.1 Gradient of Tensor Field -- 2.18.2 Divergence of Vector Point Function -- 2.18.3 Curl of Vector Point Function -- 2.19 Tensorial Formulation of Gauss's Theorem 
505 8 |a 2.20 Tensorial Formulation of Stoke's Theorem -- 2.21 Exercise -- References -- 3 Tensor in Physics -- 3.1 Kinematics of Single Particle -- 3.1.1 Momentum -- 3.1.2 Acceleration -- 3.1.3 Force -- 3.2 Kinetic Energy and Potential Energy -- 3.3 Work Function and Potential Energy -- 3.4 Momentum and Angular Momentum -- 3.5 Moment of Inertia -- 3.6 Strain Tensor at Any Point -- 3.7 Stress Tensor at any Point P -- 3.7.1 Normal Stress -- 3.7.2 Simple Stress -- 3.7.3 Shearing Stress -- 3.8 Generalised Hooke's Law -- 3.9 Isotropic Tensor -- 3.10 Exercises -- References 
505 8 |a 4 Tensor in Analytic Solid Geometry -- 4.1 Vector as Directed Line Segments -- 4.2 Geometrical Interpretation of the Sum of two Vectors -- 4.3 Length and Angle between Two Vectors -- 4.4 Geometrical Interpretation of Scalar and Vector Products -- 4.4.1 Scalar Triple Product -- 4.4.2 Vector Triple Products -- 4.5 Tensor Formulation of Analytical Solid Geometry -- 4.5.1 Distance Between Two Points P(xi) and Q(yi) -- 4.5.2 Angle Between Two Lines with Direction Cosines -- 4.5.3 The Equation of Plane -- 4.5.4 Condition for Two Line Coplanar -- 4.6 Exercises -- References -- 5 General Tensor 
505 8 |a 5.1 Curvilinear Coordinates -- 5.2 Coordinate Transformation Equation -- 5.3 Contravariant and Covariant Tensor -- 5.4 Contravariant Vector or Contravariant Tensor of Order-One -- 5.5 Covariant Vector or Covariant Tensor of Order-One -- 5.6 Mixed Second-Order Tensor -- 5.7 General Tensor of Any Order -- 5.8 Metric Tensor -- 5.9 Associate Contravariant Metric Tensor -- 5.10 Associate Metric Tensor -- 5.11 Christoffel Symbols of the First and Second-Kind -- 5.12 Covariant Derivative of a Covariant Vector -- 5.13 Covariant Derivative of a Contravariant Vector -- 5.14 Exercises -- References 
500 |a 6 Tensor in Relativity. 
520 |a This is a short introduction to the topic of Tensor Analysis. A tensor is an entity which is represented in any coordinate system by an array of numbers called its components. The components change from coordinate system to coordinate in a systematic way described by rules. The arrays of numbers are not the tensor; they are only the representation of the tensor in a particular coordinate system. The special properties of tensors are important for solving problems in Physics and Geometry. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Tensor algebra. 
650 6 |a Algèbre tensorielle. 
650 7 |a Tensor algebra  |2 fast 
700 1 |a Padaliya, Sanjay Kumar. 
758 |i has work:  |a INTRODUCTION TO TENSOR ANALYSIS (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3pcJvTfr84kM6RYJwykMq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Koranga, Bipin Singh.  |t An Introduction to Tensor Analysis.  |d Aalborg : River Publishers, ©2021  |z 9788770225816 
830 0 |a River Publishers Series in Mathematical and Engineering Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6450277  |z Texto completo 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP