|
|
|
|
LEADER |
00000cam a2200000 4500 |
001 |
EBOOKCENTRAL_on1229923914 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
210109s2021 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d LOA
|d OCLCO
|d OCLCF
|d OCLCQ
|d DXU
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1378396910
|
020 |
|
|
|a 9788770225809
|
020 |
|
|
|a 877022580X
|
035 |
|
|
|a (OCoLC)1229923914
|z (OCoLC)1378396910
|
050 |
|
4 |
|a QA200
|b .K673 2020
|
082 |
0 |
4 |
|a 515.724
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Koranga, Bipin Singh.
|
245 |
1 |
3 |
|a An Introduction to Tensor Analysis
|
260 |
|
|
|a Aalborg :
|b River Publishers,
|c 2021.
|
300 |
|
|
|a 1 online resource (128 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a River Publishers Series in Mathematical and Engineering Sciences Ser.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- AN INTRODUCTION TOTENSOR ANALYSIS -- Preface -- Syllabus -- Contents -- 1 Introduction -- 1.1 Symbols Multi-Suffix -- 1.2 Summation Convention -- References -- 2 Cartesian Tensor -- 2.1 Introduction -- 2.2 Transformation of Coordinates -- 2.3 Relations Between the Direction Cosines of Three Mutually Perpendicular Straight Lines -- 2.4 Transformation of Velocity Components -- 2.5 First-Order Tensors -- 2.6 Second-Order Tensors -- 2.7 Notation for Tensors -- 2.8 Algebraic Operations on Tensors -- 2.8.1 Sum and Difference of Tensors -- 2.8.2 Product of Tensors
|
505 |
8 |
|
|a 2.9 Quotient Law of Tensors -- 2.10 Contraction Theorem -- 2.11 Symmetric and Skew-Symmetric Tensor -- 2.12 Alternate Tensor -- 2.13 Kronecker Tensor -- 2.14 Relation Between Alternate and Kronecker Tensors -- 2.15 Matrices and Tensors of First and Second Orders -- 2.16 Product of Two Matrices -- 2.17 Scalar and Vector Inner Product -- 2.17.1 Two Vectors -- 2.17.2 Scalar Product -- 2.17.3 Vector Product -- 2.18 Tensor Fields -- 2.18.1 Gradient of Tensor Field -- 2.18.2 Divergence of Vector Point Function -- 2.18.3 Curl of Vector Point Function -- 2.19 Tensorial Formulation of Gauss's Theorem
|
505 |
8 |
|
|a 2.20 Tensorial Formulation of Stoke's Theorem -- 2.21 Exercise -- References -- 3 Tensor in Physics -- 3.1 Kinematics of Single Particle -- 3.1.1 Momentum -- 3.1.2 Acceleration -- 3.1.3 Force -- 3.2 Kinetic Energy and Potential Energy -- 3.3 Work Function and Potential Energy -- 3.4 Momentum and Angular Momentum -- 3.5 Moment of Inertia -- 3.6 Strain Tensor at Any Point -- 3.7 Stress Tensor at any Point P -- 3.7.1 Normal Stress -- 3.7.2 Simple Stress -- 3.7.3 Shearing Stress -- 3.8 Generalised Hooke's Law -- 3.9 Isotropic Tensor -- 3.10 Exercises -- References
|
505 |
8 |
|
|a 4 Tensor in Analytic Solid Geometry -- 4.1 Vector as Directed Line Segments -- 4.2 Geometrical Interpretation of the Sum of two Vectors -- 4.3 Length and Angle between Two Vectors -- 4.4 Geometrical Interpretation of Scalar and Vector Products -- 4.4.1 Scalar Triple Product -- 4.4.2 Vector Triple Products -- 4.5 Tensor Formulation of Analytical Solid Geometry -- 4.5.1 Distance Between Two Points P(xi) and Q(yi) -- 4.5.2 Angle Between Two Lines with Direction Cosines -- 4.5.3 The Equation of Plane -- 4.5.4 Condition for Two Line Coplanar -- 4.6 Exercises -- References -- 5 General Tensor
|
505 |
8 |
|
|a 5.1 Curvilinear Coordinates -- 5.2 Coordinate Transformation Equation -- 5.3 Contravariant and Covariant Tensor -- 5.4 Contravariant Vector or Contravariant Tensor of Order-One -- 5.5 Covariant Vector or Covariant Tensor of Order-One -- 5.6 Mixed Second-Order Tensor -- 5.7 General Tensor of Any Order -- 5.8 Metric Tensor -- 5.9 Associate Contravariant Metric Tensor -- 5.10 Associate Metric Tensor -- 5.11 Christoffel Symbols of the First and Second-Kind -- 5.12 Covariant Derivative of a Covariant Vector -- 5.13 Covariant Derivative of a Contravariant Vector -- 5.14 Exercises -- References
|
500 |
|
|
|a 6 Tensor in Relativity.
|
520 |
|
|
|a This is a short introduction to the topic of Tensor Analysis. A tensor is an entity which is represented in any coordinate system by an array of numbers called its components. The components change from coordinate system to coordinate in a systematic way described by rules. The arrays of numbers are not the tensor; they are only the representation of the tensor in a particular coordinate system. The special properties of tensors are important for solving problems in Physics and Geometry.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Tensor algebra.
|
650 |
|
6 |
|a Algèbre tensorielle.
|
650 |
|
7 |
|a Tensor algebra
|2 fast
|
700 |
1 |
|
|a Padaliya, Sanjay Kumar.
|
758 |
|
|
|i has work:
|a INTRODUCTION TO TENSOR ANALYSIS (Text)
|1 https://id.oclc.org/worldcat/entity/E39PD3pcJvTfr84kM6RYJwykMq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Koranga, Bipin Singh.
|t An Introduction to Tensor Analysis.
|d Aalborg : River Publishers, ©2021
|z 9788770225816
|
830 |
|
0 |
|a River Publishers Series in Mathematical and Engineering Sciences Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6450277
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
994 |
|
|
|a 92
|b IZTAP
|