Data Science The Executive Summary - a Technical Book for Non-Technical Professionals.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Chapter 1 Introduction
- 1.1 Why Managers Need to Know About Data Science
- 1.2 The New Age of Data Literacy
- 1.3 Data-Driven Development
- 1.4 How to Use this Book
- Chapter 2 The Business Side of Data Science
- 2.1 What Is Data Science?
- 2.1.1 What Data Scientists Do
- 2.1.2 History of Data Science
- 2.1.3 Data Science Roadmap
- 2.1.4 Demystifying the Terms: Data Science, Machine Learning, Statistics, and Business Intelligence
- 2.1.4.1 Machine Learning
- 2.1.4.2 Statistics
- 2.1.4.3 Business Intelligence
- 2.1.5 What Data Scientists Don't (Necessarily) Do
- 2.1.5.1 Working Without Data
- 2.1.5.2 Working with Data that Can't Be Interpreted
- 2.1.5.3 Replacing Subject Matter Experts
- 2.1.5.4 Designing Mathematical Algorithms
- 2.2 Data Science in an Organization
- 2.2.1 Types of Value Added
- 2.2.1.1 Business Insights
- 2.2.1.2 Intelligent Products
- 2.2.1.3 Building Analytics Frameworks
- 2.2.1.4 Offline Batch Analytics
- 2.2.2 One-Person Shops and Data Science Teams
- 2.2.3 Related Job Roles
- 2.2.3.1 Data Engineer
- 2.2.3.2 Data Analyst
- 2.2.3.3 Software Engineer
- 2.3 Hiring Data Scientists
- 2.3.1 Do I Even Need Data Science?
- 2.3.2 The Simplest Option: Citizen Data Scientists
- 2.3.3 The Harder Option: Dedicated Data Scientists
- 2.3.4 Programming, Algorithmic Thinking, and Code Quality
- 2.3.5 Hiring Checklist
- 2.3.6 Data Science Salaries
- 2.3.7 Bad Hires and Red Flags
- 2.3.8 Advice with Data Science Consultants
- 2.4 Management Failure Cases
- 2.4.1 Using Them as Devs
- 2.4.2 Inadequate Data
- 2.4.3 Using Them as Graph Monkeys
- 2.4.4 Nebulous Questions
- 2.4.5 Laundry Lists of Questions Without Prioritization
- Chapter 3 Working with Modern Data
- 3.1 Unstructured Data and Passive Collection
- 3.2 Data Types and Sources
- 3.3 Data Formats
- 3.3.1 CSV Files
- 3.3.2 JSON Files
- 3.3.3 XML and HTML
- 3.4 Databases
- 3.4.1 Relational Databases and Document Stores
- 3.4.2 Database Operations
- 3.5 Data Analytics Software Architectures
- 3.5.1 Shared Storage
- 3.5.2 Shared Relational Database
- 3.5.3 Document Store + Analytics RDB
- 3.5.4 Storage + Parallel Processing
- Chapter 4 Telling the Story, Summarizing Data
- 4.1 Choosing What to Measure
- 4.2 Outliers, Visualizations, and the Limits of Summary Statistics: A Picture Is Worth a Thousand Numbers
- 4.3 Experiments, Correlation, and Causality
- 4.4 Summarizing One Number
- 4.5 Key Properties to Assess: Central Tendency, Spread, and Heavy Tails
- 4.5.1 Measuring Central Tendency
- 4.5.1.1 Mean
- 4.5.1.2 Median
- 4.5.1.3 Mode
- 4.5.2 Measuring Spread
- 4.5.2.1 Standard Deviation
- 4.5.2.2 Percentiles
- 4.5.3 Advanced Material: Managing Heavy Tails
- 4.6 Summarizing Two Numbers: Correlations and Scatterplots
- 4.6.1 Correlations
- 4.6.1.1 Pearson Correlation