Cargando…

Data Science The Executive Summary - a Technical Book for Non-Technical Professionals.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cady, Field
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1228037740
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 201226s2020 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d EBLCP  |d REDDC  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9781119544166 
020 |a 1119544165 
035 |a (OCoLC)1228037740 
050 4 |a QA76.9.D343  |b .C339 2021 
082 0 4 |a 006.312 
049 |a UAMI 
100 1 |a Cady, Field. 
245 1 0 |a Data Science  |h [electronic resource] :  |b The Executive Summary - a Technical Book for Non-Technical Professionals. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2020. 
300 |a 1 online resource (211 p.) 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Introduction -- 1.1 Why Managers Need to Know About Data Science -- 1.2 The New Age of Data Literacy -- 1.3 Data-Driven Development -- 1.4 How to Use this Book -- Chapter 2 The Business Side of Data Science -- 2.1 What Is Data Science? -- 2.1.1 What Data Scientists Do -- 2.1.2 History of Data Science -- 2.1.3 Data Science Roadmap -- 2.1.4 Demystifying the Terms: Data Science, Machine Learning, Statistics, and Business Intelligence -- 2.1.4.1 Machine Learning -- 2.1.4.2 Statistics -- 2.1.4.3 Business Intelligence 
505 8 |a 2.1.5 What Data Scientists Don't (Necessarily) Do -- 2.1.5.1 Working Without Data -- 2.1.5.2 Working with Data that Can't Be Interpreted -- 2.1.5.3 Replacing Subject Matter Experts -- 2.1.5.4 Designing Mathematical Algorithms -- 2.2 Data Science in an Organization -- 2.2.1 Types of Value Added -- 2.2.1.1 Business Insights -- 2.2.1.2 Intelligent Products -- 2.2.1.3 Building Analytics Frameworks -- 2.2.1.4 Offline Batch Analytics -- 2.2.2 One-Person Shops and Data Science Teams -- 2.2.3 Related Job Roles -- 2.2.3.1 Data Engineer -- 2.2.3.2 Data Analyst -- 2.2.3.3 Software Engineer 
505 8 |a 2.3 Hiring Data Scientists -- 2.3.1 Do I Even Need Data Science? -- 2.3.2 The Simplest Option: Citizen Data Scientists -- 2.3.3 The Harder Option: Dedicated Data Scientists -- 2.3.4 Programming, Algorithmic Thinking, and Code Quality -- 2.3.5 Hiring Checklist -- 2.3.6 Data Science Salaries -- 2.3.7 Bad Hires and Red Flags -- 2.3.8 Advice with Data Science Consultants -- 2.4 Management Failure Cases -- 2.4.1 Using Them as Devs -- 2.4.2 Inadequate Data -- 2.4.3 Using Them as Graph Monkeys -- 2.4.4 Nebulous Questions -- 2.4.5 Laundry Lists of Questions Without Prioritization 
505 8 |a Chapter 3 Working with Modern Data -- 3.1 Unstructured Data and Passive Collection -- 3.2 Data Types and Sources -- 3.3 Data Formats -- 3.3.1 CSV Files -- 3.3.2 JSON Files -- 3.3.3 XML and HTML -- 3.4 Databases -- 3.4.1 Relational Databases and Document Stores -- 3.4.2 Database Operations -- 3.5 Data Analytics Software Architectures -- 3.5.1 Shared Storage -- 3.5.2 Shared Relational Database -- 3.5.3 Document Store + Analytics RDB -- 3.5.4 Storage + Parallel Processing -- Chapter 4 Telling the Story, Summarizing Data -- 4.1 Choosing What to Measure 
505 8 |a 4.2 Outliers, Visualizations, and the Limits of Summary Statistics: A Picture Is Worth a Thousand Numbers -- 4.3 Experiments, Correlation, and Causality -- 4.4 Summarizing One Number -- 4.5 Key Properties to Assess: Central Tendency, Spread, and Heavy Tails -- 4.5.1 Measuring Central Tendency -- 4.5.1.1 Mean -- 4.5.1.2 Median -- 4.5.1.3 Mode -- 4.5.2 Measuring Spread -- 4.5.2.1 Standard Deviation -- 4.5.2.2 Percentiles -- 4.5.3 Advanced Material: Managing Heavy Tails -- 4.6 Summarizing Two Numbers: Correlations and Scatterplots -- 4.6.1 Correlations -- 4.6.1.1 Pearson Correlation 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Data mining. 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining  |2 fast 
776 0 8 |i Print version:  |a Cady, Field  |t Data Science  |d Newark : John Wiley & Sons, Incorporated,c2020  |z 9781119544081 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6413916  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6413916 
994 |a 92  |b IZTAP