R for Conservation and Development Projects A Primer for Practitioners.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Milton :
CRC Press LLC,
2020.
|
Colección: | Chapman and Hall/CRC the R Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Dedication
- Contents
- Preface
- 1. Introduction
- 1.1. What is R?
- 1.2. Why R?
- 1.3. Why this book?
- 1.4. What are development and conservation?
- 1.5. Science and decision making
- 1.6. Why data science is important
- 1.6.1. Monitoring and evaluation
- 1.6.2. Projects versus programmes
- 1.6.3. Project delivery versus research projects
- 1.7. The goal of this book
- 1.8. How this book is organised
- 1.9. How code is organised in this book
- I: Basics
- 2. Inference and Evidence
- 2.1. Inference
- 2.2. Study design
- 2.3. Evidence
- 2.4. What makes good data?
- 2.5. Recommended resources
- 2.6. Summary
- 3. Data integration in project management
- 3.1. Adaptive management cycles
- 3.2. The Deming cycle
- 3.2.1. Plan
- 3.2.1.1. Development of a project strategy and proposal
- 3.2.1.2. Proposal submission process
- 3.2.1.3. What is a logframe?
- 3.2.1.4. Logframe terminology
- 3.2.1.5. Pre-implementation planning
- 3.2.2. Train
- 3.2.3. Do
- 3.2.4. Check
- 3.2.5. Act
- 3.3. Challenges
- 3.4. Recommended resources
- 3.5. Summary
- 4. Getting started in R
- 4.1. Installing R
- 4.2. Installing RStudio
- 4.3. The R interface
- 4.3.1. The console
- 4.3.2. Version information
- 4.3.3. Writing code in the console
- 4.3.4. Script editors
- 4.3.5. Using the default script editor
- 4.3.6. Using RStudio
- 4.4. R as a calculator
- 4.5. How R works
- 4.5.1. Objects
- 4.5.2. Functions
- 4.5.2.1. Getting help on functions
- 4.5.3. Packages
- 4.5.3.1. Getting help on packages
- 4.6. Writing meaningful code
- 4.7. Reproducibility
- 4.8. Recommended resources
- 4.9. Summary
- 5. Introduction to data frames
- 5.1. Making data frames
- 5.2. Importing a data frame
- 5.3. Saving a data frame
- 5.4. Investigating a data frame
- 5.5. Other functions to examine an R object
- 5.6. Subsetting using the `[' and `]' operators
- 5.7. Descriptive statistics
- 5.8. Viewing data frames
- 5.9. Making a reproducible example
- 5.9.1. Reproducible example steps
- 5.10. Recommended resources
- 5.11. Summary
- 6. The Waihi project
- 6.1. The scenario
- 6.1.1. Why evidence is important
- 6.2. The data
- 6.2.1. Description of condev data sets
- 6.3. Recommended resources
- 6.4. Summary
- II: First steps
- 7. ggplot2: graphing with the tidyverse
- 7.1. Why graph?
- 7.2. The tidyverse package
- 7.3. The data
- 7.4. Graphing in R
- 7.4.1. Making a ggplot
- 7.4.2. Scatter plots
- 7.4.3. Bar plots
- 7.4.4. Histograms
- 7.4.5. Box plots
- 7.4.6. Polygons
- 7.4.7. Other common geoms
- 7.5. How to save a ggplot
- 7.6. Recommended resources
- 7.7. Summary
- 8. Customising a ggplot
- 8.1. Why customise a ggplot?
- 8.2. The packages
- 8.3. The data
- 8.4. Families of layers
- 8.5. Aesthetics properties
- 8.5.1. Settings aesthetics
- 8.5.2. A quick note about colour