Process Intensification and Integration for Sustainable Design
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Chapter 1 Shale Gas as an Option for the Production of Chemicals and Challenges for Process Intensification
- 1.1 Introduction
- 1.2 Where Is It Found?
- 1.3 Shale Gas Composition
- 1.4 Shale Gas Effect on Natural Gas Prices
- 1.5 Alternatives to Produce Chemicals from Shale Gas
- 1.6 Synthesis Gas
- 1.7 Methanol
- 1.8 Ethylene
- 1.9 Benzene
- 1.10 Propylene
- 1.11 Process Intensification Opportunities
- 1.12 Potential Benefits and Tradeoffs Associated with Process Intensification
- 1.13 Conclusions
- References
- Chapter 2 Design and Techno-Economic Analysis of Separation Units to Handle Feedstock Variability in Shale Gas Treatment
- 2.1 Introduction
- 2.2 Problem Statement
- 2.3 Methodology
- 2.4 Case Study
- 2.4.1 Data
- 2.4.2 Process Simulations and Economic Evaluation
- 2.4.2.1 Changes in Fixed and Variable Costs
- 2.4.2.2 Revenue
- 2.4.2.3 Economic Calculations
- 2.4.3 Safety Index Calculations
- 2.5 Discussion
- 2.5.1 Process Simulations
- 2.5.1.1 Dehydration Process
- 2.5.1.2 NGL Recovery Process
- 2.5.1.3 Fractionation Train
- 2.5.1.4 Acid Gas Removal
- 2.5.2 Profitability Assessment
- 2.5.3 High Acid Gas Case Economics
- 2.5.4 Safety Index Results
- 2.5.5 Sensitivity Analysis
- 2.5.5.1 Heating Value Cases
- 2.5.5.2 NGL Price Cases
- 2.6 Conclusions
- Appendices
- References
- Chapter 3 Sustainable Design and Model-Based Optimization of Hybrid RO-PRO Desalination Process
- 3.1 Introduction
- 3.2 Unit Model Description and Hybrid Process Design
- 3.2.1 The Process Description
- 3.2.2 Unit Model and Performance Metrics
- 3.2.2.1 RO Unit Model
- 3.2.2.2 PRO Unit Model
- 3.2.3 The RO-PRO Hybrid Processes
- 3.2.3.1 Open-Loop Configuration
- 3.2.3.2 Closed-Loop Configuration
- 3.3 Unified Model-Based Analysis and Optimization
- 3.3.1 Dimensionless Mathematical Modeling
- 3.3.2 Mathematical Model and Objectives
- 3.3.3 Optimization Results and Comparative Analysis
- 3.4 Conclusion
- Nomenclature
- References
- Chapter 4 Techno-economic and Environmental Assessment of Ultrathin Polysulfone Membranes for Oxygen-Enriched Combustion
- 4.1 Introduction
- 4.2 Numerical Methodology for Membrane Gas Separation Design
- 4.3 Methodology
- 4.3.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular Scale)
- 4.3.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale)
- 4.3.3 Design of Oxygen-Enriched Combustion Using Ultrathin PSF Membranes
- 4.4 Results and Discussion
- 4.4.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular)
- 4.4.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale)