Cargando…

Process Intensification and Integration for Sustainable Design

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Foo, Dominic C. Y.
Otros Autores: El-Halwagi, Mahmoud M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Chapter 1 Shale Gas as an Option for the Production of Chemicals and Challenges for Process Intensification
  • 1.1 Introduction
  • 1.2 Where Is It Found?
  • 1.3 Shale Gas Composition
  • 1.4 Shale Gas Effect on Natural Gas Prices
  • 1.5 Alternatives to Produce Chemicals from Shale Gas
  • 1.6 Synthesis Gas
  • 1.7 Methanol
  • 1.8 Ethylene
  • 1.9 Benzene
  • 1.10 Propylene
  • 1.11 Process Intensification Opportunities
  • 1.12 Potential Benefits and Tradeoffs Associated with Process Intensification
  • 1.13 Conclusions
  • References
  • Chapter 2 Design and Techno-Economic Analysis of Separation Units to Handle Feedstock Variability in Shale Gas Treatment
  • 2.1 Introduction
  • 2.2 Problem Statement
  • 2.3 Methodology
  • 2.4 Case Study
  • 2.4.1 Data
  • 2.4.2 Process Simulations and Economic Evaluation
  • 2.4.2.1 Changes in Fixed and Variable Costs
  • 2.4.2.2 Revenue
  • 2.4.2.3 Economic Calculations
  • 2.4.3 Safety Index Calculations
  • 2.5 Discussion
  • 2.5.1 Process Simulations
  • 2.5.1.1 Dehydration Process
  • 2.5.1.2 NGL Recovery Process
  • 2.5.1.3 Fractionation Train
  • 2.5.1.4 Acid Gas Removal
  • 2.5.2 Profitability Assessment
  • 2.5.3 High Acid Gas Case Economics
  • 2.5.4 Safety Index Results
  • 2.5.5 Sensitivity Analysis
  • 2.5.5.1 Heating Value Cases
  • 2.5.5.2 NGL Price Cases
  • 2.6 Conclusions
  • Appendices
  • References
  • Chapter 3 Sustainable Design and Model-Based Optimization of Hybrid RO-PRO Desalination Process
  • 3.1 Introduction
  • 3.2 Unit Model Description and Hybrid Process Design
  • 3.2.1 The Process Description
  • 3.2.2 Unit Model and Performance Metrics
  • 3.2.2.1 RO Unit Model
  • 3.2.2.2 PRO Unit Model
  • 3.2.3 The RO-PRO Hybrid Processes
  • 3.2.3.1 Open-Loop Configuration
  • 3.2.3.2 Closed-Loop Configuration
  • 3.3 Unified Model-Based Analysis and Optimization
  • 3.3.1 Dimensionless Mathematical Modeling
  • 3.3.2 Mathematical Model and Objectives
  • 3.3.3 Optimization Results and Comparative Analysis
  • 3.4 Conclusion
  • Nomenclature
  • References
  • Chapter 4 Techno-economic and Environmental Assessment of Ultrathin Polysulfone Membranes for Oxygen-Enriched Combustion
  • 4.1 Introduction
  • 4.2 Numerical Methodology for Membrane Gas Separation Design
  • 4.3 Methodology
  • 4.3.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular Scale)
  • 4.3.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale)
  • 4.3.3 Design of Oxygen-Enriched Combustion Using Ultrathin PSF Membranes
  • 4.4 Results and Discussion
  • 4.4.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular)
  • 4.4.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale)