Distributed Artificial Intelligence A Modern Approach.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Milton :
Taylor & Francis Group,
2020.
|
Colección: | Internet of Everything (IoE) Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Table of Contents
- Preface
- Editors
- Contributors
- Chapter 1 Distributed Artificial Intelligence
- 1.1 Introduction
- 1.2 Why Distributed Artificial Intelligence?
- 1.3 Characteristics of Distributed Artificial Intelligence
- 1.4 Planning of DAI Multi-Agents
- 1.5 Coordination among Multi-Agents
- 1.5.1 Forestalling Mobocracy or Confusion
- 1.5.2 Meeting Overall Requirements
- 1.5.3 Distributed Skill, Resources, and Data
- 1.5.4 Dependency among the Agents
- 1.5.5 Efficiency
- 1.6 Communication Modes among the Agents
- 1.7 Categories of RPC
- 1.8 Participation of Multi-Agents
- 1.8.1 Fully Cooperative Architecture
- 1.8.2 Partial Cooperative Architecture
- 1.9 Applications of DAI
- 1.9.1 Electricity Distribution
- 1.9.2 Telecommunications Systems
- 1.9.3 Database Technologies for Service Order Processing
- 1.9.3.1 Concurrent Engineering
- 1.9.3.2 Weather Monitoring
- 1.9.3.3 Intelligent Traffic Control
- 1.10 Conclusion
- References
- Chapter 2 Intelligent Agents
- 2.1 Introduction
- 2.2 Need for Evolving Agents in Evolutionary Software Systems
- 2.2.1 Change of Requirements
- 2.2.2 Need for an Evolving System
- 2.2.3 Software System
- 2.2.4 Evolving Software System
- 2.3 Agents
- 2.3.1 Evolving Agents
- 2.3.2 Agent Architecture
- 2.3.3 Application Domain
- 2.3.3.1 Types of Agents
- References
- Chapter 3 Knowledge-Based Problem-Solving: How AI and Big Data Are Transforming Health Care
- 3.1 Introduction
- 3.2 The Role of AI, Big Data, and IoT in Health Care
- 3.3 Image-Based Diagnosis
- 3.4 Big Data Analytics Process Using Machine Learning
- 3.5 Discussion
- 3.6 Conclusion
- References
- Chapter 4 Distributed Artificial Intelligence for Document Retrieval
- 4.1 Introduction
- 4.2 Proposed Research
- 4.2.1 Improving Precision
- 4.3 General-Purpose Ranking
- 4.4 Structure-Weighted Ranking
- 4.5 The Structure-Weighted/Learned Function
- 4.6 Improving Recall and Precision
- 4.6.1 Stemming
- 4.6.2 Relevance Feedback
- 4.6.3 Thesaurus
- 4.7 Preliminary Results
- 4.8 Scope for Distributed AI in This Process
- 4.9 Benefits of Decentralized Search Engines
- 4.10 Discussion
- 4.11 Conclusion
- References
- Chapter 5 Distributed Consensus
- 5.1 Introduction
- 5.2 Nakamoto Consensus
- 5.2.1 Nakamoto Consensus Working
- 5.2.1.1 Proof of Work
- 5.2.1.2 Block Selection
- 5.2.1.3 Scarcity
- 5.2.1.4 Incentive Structure
- 5.2.2 Security of Bitcoin
- 5.2.3 The PoW Algorithm
- 5.2.4 Proof of Stake
- 5.2.5 Proof of Burn
- 5.2.6 Difficulty Level
- 5.2.7 Sybil Attack
- 5.2.7.1 Eclipse Attack
- 5.2.8 Hyperledger Fabric: A Blockchain Development
- 5.3 Conclusions and Discussions
- References
- Chapter 6 DAI for Information Retrieval
- 6.1 Introduction
- 6.2 Distributed Problem-Solving
- 6.3 Multiagents