Multi-Agent Coordination A Reinforcement Learning Approach.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
Colección: | Wiley - IEEE Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Preface
- Acknowledgments
- Chapter 1 Introduction: Multi-agent Coordination by Reinforcement Learning and Evolutionary Algorithms
- 1.1 Introduction
- 1.2 Single Agent Planning
- 1.2.1 Terminologies Used in Single Agent Planning
- 1.2.2 Single Agent Search-Based Planning Algorithms
- 1.2.2.1 Dijkstra's Algorithm
- 1.2.2.2 A* (A-star) Algorithm
- 1.2.2.3 D* (D-star) Algorithm
- 1.2.2.4 Planning by STRIPS-Like Language
- 1.2.3 Single Agent RL
- 1.2.3.1 Multiarmed Bandit Problem
- 1.2.3.2 DP and Bellman Equation
- 1.2.3.3 Correlation Between RL and DP
- 1.2.3.4 Single Agent Q-Learning
- 1.2.3.5 Single Agent Planning Using Q-Learning
- 1.3 Multi-agent Planning and Coordination
- 1.3.1 Terminologies Related to Multi-agent Coordination
- 1.3.2 Classification of MAS
- 1.3.3 Game Theory for Multi-agent Coordination
- 1.3.3.1 Nash Equilibrium
- 1.3.3.2 Correlated Equilibrium
- 1.3.3.3 Static Game Examples
- 1.3.4 Correlation Among RL, DP, and GT
- 1.3.5 Classification of MARL
- 1.3.5.1 Cooperative MARL
- 1.3.5.2 Competitive MARL
- 1.3.5.3 Mixed MARL
- 1.3.6 Coordination and Planning by MAQL
- 1.3.7 Performance Analysis of MAQL and MAQL-Based Coordination
- 1.4 Coordination by Optimization Algorithm
- 1.4.1 PSO Algorithm
- 1.4.2 Firefly Algorithm
- 1.4.2.1 Initialization
- 1.4.2.2 Attraction to Brighter Fireflies
- 1.4.2.3 Movement of Fireflies
- 1.4.3 Imperialist Competitive Algorithm
- 1.4.3.1 Initialization
- 1.4.3.2 Selection of Imperialists and Colonies
- 1.4.3.3 Formation of Empires
- 1.4.3.4 Assimilation of Colonies
- 1.4.3.5 Revolution
- 1.4.3.6 Imperialistic Competition
- 1.4.4 Differential Evolution Algorithm
- 1.4.4.1 Initialization
- 1.4.4.2 Mutation
- 1.4.4.3 Recombination
- 1.4.4.4 Selection
- 1.4.5 Off-line Optimization
- 1.4.6 Performance Analysis of Optimization Algorithms
- 1.4.6.1 Friedman Test
- 1.4.6.2 Iman-Davenport Test
- 1.5 Summary
- References
- Chapter 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning
- 2.1 Introduction
- 2.2 Literature Review
- 2.3 Preliminaries
- 2.3.1 Single Agent Q-learning
- 2.3.2 Multi-agent Q-learning
- 2.4 Proposed MAQL
- 2.4.1 Two Useful Properties
- 2.5 Proposed FCMQL Algorithms and Their Convergence Analysis
- 2.5.1 Proposed FCMQL Algorithms
- 2.5.2 Convergence Analysis of the Proposed FCMQL Algorithms
- 2.6 FCMQL-Based Cooperative Multi-agent Planning
- 2.7 Experiments and Results
- 2.8 Conclusions
- 2.9 Summary
- 2.A More Details on Experimental Results
- 2.A.1 Additional Details of Experiment 2.1
- 2.A.2 Additional Details of Experiment 2.2
- 2.A.3 Additional Details of Experiment 2.4
- References
- Chapter 3 Consensus Q-Learning for Multi-agent Cooperative Planning
- 3.1 Introduction
- 3.2 Preliminaries
- 3.2.1 Single Agent Q-Learning
- 3.2.2 Equilibrium-Based Multi-agent Q-Learning
- 3.3 Consensus