Cargando…

Statistical Topics and Stochastic Models for Dependent Data with Applications Applications in Reliability, Survival Analysis and Related Fields.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barbu, Vlad Stefan
Otros Autores: Vergne, Nicolas
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 EBOOKCENTRAL_on1225549506
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 201205s2020 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d EBLCP  |d REDDC  |d OCLCF  |d LOA  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DXU  |d OCLCL  |d OCLCQ 
066 |c (S 
020 |a 9781119779414 
020 |a 1119779413 
035 |a (OCoLC)1225549506 
050 4 |a QA276  |b .S738 2020 
082 0 4 |a 519.5  |2 23 
049 |a UAMI 
100 1 |a Barbu, Vlad Stefan. 
245 1 0 |a Statistical Topics and Stochastic Models for Dependent Data with Applications  |h [electronic resource] :  |b Applications in Reliability, Survival Analysis and Related Fields. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2020. 
300 |a 1 online resource (281 p.) 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Markov and Semi-Markov Processes -- Chapter 1 Variable Length Markov Chains, Persistent Random Walks: A Close Encounter -- 1.1. Introduction -- 1.2. VLMCs: definition of the model -- 1.3. Definition and behavior of PRWs -- 1.3.1. PRWs in dimension one -- 1.3.2. PRWs in dimension two -- 1.4. VLMC: existence of stationary probability measures -- 1.5. Where VLMC and PRW meet -- 1.5.1. Semi-Markov chains and Markov additive processes -- 1.5.2. PRWs induce semi-Markov chains 
505 8 |a 3.3.2. Two-stage model -- 3.3.3. H model -- 3.3.4. Three-stage model -- 3.3.5. N-stage model -- 3.3.6. Other extensions -- 3.4. Markov chain stock models -- 3.4.1. Hurley and Johnson model -- 3.4.2. Yao model -- 3.4.3. Markov stock model -- 3.4.4. Multivariate Markov chain stock model -- 3.5. Conclusion -- 3.6. References -- Chapter 4 Estimation of Piecewise-deterministic Trajectories in a Quantum Optics Scenario -- 4.1. Introduction -- 4.1.1. The postulates of quantum mechanics -- 4.1.2. Dynamics of open quantum Markovian systems -- 4.1.3. Stochastic wave function: quantum dynamics as PDPs 
505 8 |a 4.1.4. Estimation for PDPs -- 4.2. Problem formulation -- 4.2.1. Atom-field interaction -- 4.2.2. Piecewise-deterministic trajectories -- 4.2.3. Measures -- 4.3. Estimation procedure -- 4.3.1. Strategy -- 4.3.2. Least-square estimators -- 4.3.3. Numerical experiments -- 4.4. Physical interpretation -- 4.5. Concluding remarks -- 4.6. References -- Chapter 5 Identification of Patterns in a Semi-Markov Chain -- 5.1. Introduction -- 5.2. The prefix chain -- 5.3. The semi-Markov setting -- 5.4. The hitting time of the pattern -- 5.5. A genomic application -- 5.6. Concluding remarks -- 5.7. References 
505 8 |a Part 2 Autoregressive Processes -- Chapter 6 Time Changes and Stationarity Issues for Continuous Time Autoregressive Processes of Order -- 6.1. Introduction -- 6.2. Basics -- 6.3. Stationary AR processes -- 6.3.1. Formulas for the two first-order moments -- 6.3.2. Examples -- 6.3.3. Conditions for stationarity of CAR1(p) processes -- 6.4. Time transforms -- 6.4.1. Properties of time transforms -- 6.4.2. MS processes -- 6.5. Conclusion -- 6.6. Appendix -- 6.7. References -- Chapter 7 Sequential Estimation for Non-parametric Autoregressive Models -- 7.1. Introduction -- 7.2. Main conditions 
500 |a 7.3. Pointwise estimation with absolute error risk. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical statistics. 
650 7 |a Mathematical statistics  |2 fast 
700 1 |a Vergne, Nicolas. 
758 |i has work:  |a Statistical topics and stochastic models for dependent data with applications (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH8km78qmpFhyfyKQJqDWP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Barbu, Vlad Stefan  |t Statistical Topics and Stochastic Models for Dependent Data with Applications : Applications in Reliability, Survival Analysis and Related Fields  |d Newark : John Wiley & Sons, Incorporated,c2020  |z 9781786306036 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6370637  |z Texto completo 
880 8 |6 505-00/(S  |a 1.5.3. Semi-Markov chain of the α-LIS in a stable VLMC -- 1.5.4. The meeting point -- 1.6. References -- Chapter 2 Bootstraps of Martingale-difference Arrays Under the Uniformly Integrable Entropy -- 2.1. Introduction and motivation -- 2.2. Some preliminaries and notation -- 2.3. Main results -- 2.4. Application for the semi-Markov kernel estimators -- 2.5. Proofs -- 2.6. References -- Chapter 3 A Review of the Dividend Discount Model: From Deterministic to Stochastic Models -- 3.1. Introduction -- 3.2. General model -- 3.3. Gordon growth model and extensions -- 3.3.1. Gordon model 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6370637 
994 |a 92  |b IZTAP