Principles of Uncertainty
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Milton :
CRC Press LLC,
2020.
|
Edición: | 2nd ed. |
Colección: | Chapman and Hall/CRC Texts in Statistical Science Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half Title
- Title Page
- Copyright Page
- Dedication
- Table of Contents
- List of Figures
- List of Tables
- Foreword
- Preface
- 1 Probability
- 1.1 Avoiding being a sure loser
- 1.1.1 Interpretation
- 1.1.2 Notes and other views
- 1.1.3 Summary
- 1.1.4 Exercises
- 1.2 Disjoint events
- 1.2.1 Summary
- 1.2.2 A supplement on induction
- 1.2.3 A supplement on indexed mathematical expressions
- 1.2.4 Intersections of events
- 1.2.5 Summary
- 1.2.6 Exercises
- 1.3 Events not necessarily disjoint
- 1.3.1 A supplement on proofs of set inclusion
- 1.3.2 Boole's Inequality
- 1.3.3 Summary
- 1.3.4 Exercises
- 1.4 Random variables, also known as uncertain quantities
- 1.4.1 Summary
- 1.4.2 Exercises
- 1.5 Finite number of values
- 1.5.1 Summary
- 1.5.2 Exercises
- 1.6 Other properties of expectation
- 1.6.1 Summary
- 1.6.2 Exercises
- 1.7 Coherence implies not a sure loser
- 1.7.1 Summary
- 1.7.2 Exercises
- 1.8 Expectations and limits
- 1.8.1 A supplement on limits
- 1.8.2 Resuming the discussion of expectations and limits
- 1.8.3 Reference
- 1.8.4 Exercises
- 2 Conditional Probability and Bayes Theorem
- 2.1 Conditional probability
- 2.1.1 Summary
- 2.1.2 Exercises
- 2.2 The birthday problem
- 2.2.1 Exercises
- 2.2.2 A supplement on computing
- 2.2.3 References
- 2.2.4 Exercises
- 2.3 Simpson's Paradox
- 2.3.1 Notes
- 2.3.2 Exercises
- 2.4 Bayes Theorem
- 2.4.1 Notes and other views
- 2.4.2 Exercises
- 2.5 Independence of events
- 2.5.1 Summary
- 2.5.2 Exercises
- 2.6 The Monty Hall problem
- 2.6.1 Exercises
- 2.7 Gambler's Ruin problem
- 2.7.1 Changing stakes
- 2.7.2 Summary
- 2.7.3 References
- 2.7.4 Exercises
- 2.8 Iterated expectations and independence
- 2.8.1 Summary
- 2.8.2 Exercises
- 2.9 The binomial and multinomial distributions
- 2.9.1 Refining and coarsening
- 2.9.2 Why these distributions have these names
- 2.9.3 Summary
- 2.9.4 Exercises
- 2.10 Sampling without replacement
- 2.10.1 Polya's Urn Scheme
- 2.10.2 Summary
- 2.10.3 References
- 2.10.4 Exercises
- 2.11 Variance and covariance
- 2.11.1 An application of the Cauchy-Schwarz Inequality
- 2.11.2 Remark
- 2.11.3 Summary
- 2.11.4 Exercises
- 2.12 A short introduction to multivariate thinking
- 2.12.1 A supplement on vectors and matrices
- 2.12.2 Least squares
- 2.12.3 A limitation of correlation in expressing negative association between non-independent random variables
- 2.12.4 Covariance matrices
- 2.12.5 Conditional variances and covariances
- 2.12.6 Summary
- 2.12.7 Exercises
- 2.13 Tchebychev's Inequality
- 2.13.1 Interpretations
- 2.13.2 Summary
- 2.13.3 Exercises
- 3 Discrete Random Variables
- 3.1 Countably many possible values
- 3.1.1 A supplement on in nity
- 3.1.2 Notes
- 3.1.3 Summary
- 3.1.4 Exercises
- 3.2 Finite additivity
- 3.2.1 Summary
- 3.2.2 References
- 3.2.3 Exercises
- 3.3 Countable additivity
- 3.3.1 Summary