Cargando…

New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Mathbb{R}^{n}

The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Alarcón, Antonio
Otros Autores: Forstnerič, Franc, López, Francisco J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2020.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title page
  • Chapter 1. Introduction
  • 1.1. A summary of the main results
  • 1.2. Basic notions of minimal surface theory
  • 1.3. Approximation and general position theorems
  • 1.4. Complete non-orientable minimal surfaces with Jordan boundaries
  • 1.5. Proper non-orientable minimal surfaces in domains in \Rⁿ
  • Chapter 2. Preliminaries
  • 2.1. Conformal structures on surfaces
  • 2.2. \Igot-invariant functions and 1-forms. Spaces of functions and maps
  • 2.3. Homology basis and period map
  • 2.4. Conformal minimal immersions of non-orientable surfaces
  • 2.5. Notation
  • Chapter 3. Gluing \Igot-invariant sprays and applications
  • 3.1. \Igot-invariant sprays
  • 3.2. Gluing \Igot-invariant sprays on \Igot-invariant Cartan pairs
  • 3.3. \Igot-invariant period dominating sprays
  • 3.4. Banach manifold structure of the space \CMI_{\Igot}ⁿ(\Ncal)
  • 3.5. Basic approximation results
  • 3.6. The Riemann-Hilbert method for non-orientable minimal surfaces
  • Chapter 4. Approximation theorems for non-orientable minimal surfaces
  • 4.1. A Mergelyan approximation theorem
  • 4.2. A Mergelyan theorem with fixed components
  • Chapter 5. A general position theorem for non-orientable minimal surfaces
  • Chapter 6. Applications
  • 6.1. Proper non-orientable minimal surfaces in \Rⁿ
  • 6.2. Complete non-orientable minimal surfaces with fixed components
  • 6.3. Complete non-orientable minimal surfaces with Jordan boundaries
  • 6.4. Proper non-orientable minimal surfaces in -convex domains
  • Bibliography
  • Back Cover