New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Mathbb{R}^{n}
The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2020.
|
Colección: | Memoirs of the American Mathematical Society Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction
- 1.1. A summary of the main results
- 1.2. Basic notions of minimal surface theory
- 1.3. Approximation and general position theorems
- 1.4. Complete non-orientable minimal surfaces with Jordan boundaries
- 1.5. Proper non-orientable minimal surfaces in domains in \Rⁿ
- Chapter 2. Preliminaries
- 2.1. Conformal structures on surfaces
- 2.2. \Igot-invariant functions and 1-forms. Spaces of functions and maps
- 2.3. Homology basis and period map
- 2.4. Conformal minimal immersions of non-orientable surfaces
- 2.5. Notation
- Chapter 3. Gluing \Igot-invariant sprays and applications
- 3.1. \Igot-invariant sprays
- 3.2. Gluing \Igot-invariant sprays on \Igot-invariant Cartan pairs
- 3.3. \Igot-invariant period dominating sprays
- 3.4. Banach manifold structure of the space \CMI_{\Igot}ⁿ(\Ncal)
- 3.5. Basic approximation results
- 3.6. The Riemann-Hilbert method for non-orientable minimal surfaces
- Chapter 4. Approximation theorems for non-orientable minimal surfaces
- 4.1. A Mergelyan approximation theorem
- 4.2. A Mergelyan theorem with fixed components
- Chapter 5. A general position theorem for non-orientable minimal surfaces
- Chapter 6. Applications
- 6.1. Proper non-orientable minimal surfaces in \Rⁿ
- 6.2. Complete non-orientable minimal surfaces with fixed components
- 6.3. Complete non-orientable minimal surfaces with Jordan boundaries
- 6.4. Proper non-orientable minimal surfaces in -convex domains
- Bibliography
- Back Cover