|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1223095038 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
201121s2020 riu o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d LOA
|d OCLCO
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781470458126
|
020 |
|
|
|a 1470458128
|
029 |
1 |
|
|a AU@
|b 000069468711
|
035 |
|
|
|a (OCoLC)1223095038
|
050 |
|
4 |
|a QA644
|b .A437 2020
|
082 |
0 |
4 |
|a 516.3/62
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Alarcón, Antonio.
|
245 |
1 |
0 |
|a New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Mathbb{R}^{n}
|h [electronic resource].
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 2020.
|
300 |
|
|
|a 1 online resource (90 p.).
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society Ser. ;
|v v.264
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Cover -- Title page -- Chapter 1. Introduction -- 1.1. A summary of the main results -- 1.2. Basic notions of minimal surface theory -- 1.3. Approximation and general position theorems -- 1.4. Complete non-orientable minimal surfaces with Jordan boundaries -- 1.5. Proper non-orientable minimal surfaces in domains in \Rⁿ -- Chapter 2. Preliminaries -- 2.1. Conformal structures on surfaces -- 2.2. \Igot-invariant functions and 1-forms. Spaces of functions and maps -- 2.3. Homology basis and period map -- 2.4. Conformal minimal immersions of non-orientable surfaces -- 2.5. Notation
|
505 |
8 |
|
|a Chapter 3. Gluing \Igot-invariant sprays and applications -- 3.1. \Igot-invariant sprays -- 3.2. Gluing \Igot-invariant sprays on \Igot-invariant Cartan pairs -- 3.3. \Igot-invariant period dominating sprays -- 3.4. Banach manifold structure of the space \CMI_{\Igot}ⁿ(\Ncal) -- 3.5. Basic approximation results -- 3.6. The Riemann-Hilbert method for non-orientable minimal surfaces -- Chapter 4. Approximation theorems for non-orientable minimal surfaces -- 4.1. A Mergelyan approximation theorem -- 4.2. A Mergelyan theorem with fixed components
|
505 |
8 |
|
|a Chapter 5. A general position theorem for non-orientable minimal surfaces -- Chapter 6. Applications -- 6.1. Proper non-orientable minimal surfaces in \Rⁿ -- 6.2. Complete non-orientable minimal surfaces with fixed components -- 6.3. Complete non-orientable minimal surfaces with Jordan boundaries -- 6.4. Proper non-orientable minimal surfaces in -convex domains -- Bibliography -- Back Cover
|
520 |
|
|
|a The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to \mathbb{R}^n is a real analytic Banach manifold, obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces, and show general position theorems for non-orientable co.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Sprays (Mathematics)
|
650 |
|
0 |
|a Minimal surfaces.
|
650 |
|
0 |
|a Holomorphic mappings.
|
650 |
|
0 |
|a Approximation theory.
|
650 |
|
0 |
|a Analytic spaces.
|
650 |
|
0 |
|a Affine differential geometry.
|
650 |
|
6 |
|a Surfaces minimales.
|
650 |
|
6 |
|a Applications holomorphes.
|
650 |
|
6 |
|a Théorie de l'approximation.
|
650 |
|
6 |
|a Espaces analytiques.
|
650 |
|
6 |
|a Géométrie différentielle affine.
|
650 |
|
7 |
|a Affine differential geometry
|2 fast
|
650 |
|
7 |
|a Analytic spaces
|2 fast
|
650 |
|
7 |
|a Approximation theory
|2 fast
|
650 |
|
7 |
|a Holomorphic mappings
|2 fast
|
650 |
|
7 |
|a Minimal surfaces
|2 fast
|
650 |
|
7 |
|a Sprays (Mathematics)
|2 fast
|
650 |
|
7 |
|a Several complex variables and analytic spaces {For infinite-dimensional holomorphy, see 46G20, 58B12} -- Local analytic geometry [See also 13-XX and 14-XX] -- Analytic subsets of affine space.
|2 msc
|
650 |
|
7 |
|a Several complex variables and analytic spaces {For infinite-dimensional holomorphy, see 46G20, 58B12} -- Holomorphic convexity -- Holomorphic and polynomial approximation, Runge pairs, interpolation.
|2 msc
|
700 |
1 |
|
|a Forstnerič, Franc.
|
700 |
1 |
|
|a López, Francisco J.
|
776 |
0 |
8 |
|i Print version:
|a Alarcón, Antonio
|t New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Mathbb{R}^{n}
|d Providence : American Mathematical Society,c2020
|z 9781470441616
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6195962
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6195962
|
994 |
|
|
|a 92
|b IZTAP
|