Cargando…

New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Mathbb{R}^{n}

The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Alarcón, Antonio
Otros Autores: Forstnerič, Franc, López, Francisco J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2020.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1223095038
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 201121s2020 riu o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d LOA  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781470458126 
020 |a 1470458128 
029 1 |a AU@  |b 000069468711 
035 |a (OCoLC)1223095038 
050 4 |a QA644  |b .A437 2020 
082 0 4 |a 516.3/62  |2 23 
049 |a UAMI 
100 1 |a Alarcón, Antonio. 
245 1 0 |a New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Mathbb{R}^{n}  |h [electronic resource]. 
260 |a Providence :  |b American Mathematical Society,  |c 2020. 
300 |a 1 online resource (90 p.). 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v.264 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title page -- Chapter 1. Introduction -- 1.1. A summary of the main results -- 1.2. Basic notions of minimal surface theory -- 1.3. Approximation and general position theorems -- 1.4. Complete non-orientable minimal surfaces with Jordan boundaries -- 1.5. Proper non-orientable minimal surfaces in domains in \Rⁿ -- Chapter 2. Preliminaries -- 2.1. Conformal structures on surfaces -- 2.2. \Igot-invariant functions and 1-forms. Spaces of functions and maps -- 2.3. Homology basis and period map -- 2.4. Conformal minimal immersions of non-orientable surfaces -- 2.5. Notation 
505 8 |a Chapter 3. Gluing \Igot-invariant sprays and applications -- 3.1. \Igot-invariant sprays -- 3.2. Gluing \Igot-invariant sprays on \Igot-invariant Cartan pairs -- 3.3. \Igot-invariant period dominating sprays -- 3.4. Banach manifold structure of the space \CMI_{\Igot}ⁿ(\Ncal) -- 3.5. Basic approximation results -- 3.6. The Riemann-Hilbert method for non-orientable minimal surfaces -- Chapter 4. Approximation theorems for non-orientable minimal surfaces -- 4.1. A Mergelyan approximation theorem -- 4.2. A Mergelyan theorem with fixed components 
505 8 |a Chapter 5. A general position theorem for non-orientable minimal surfaces -- Chapter 6. Applications -- 6.1. Proper non-orientable minimal surfaces in \Rⁿ -- 6.2. Complete non-orientable minimal surfaces with fixed components -- 6.3. Complete non-orientable minimal surfaces with Jordan boundaries -- 6.4. Proper non-orientable minimal surfaces in -convex domains -- Bibliography -- Back Cover 
520 |a The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to \mathbb{R}^n is a real analytic Banach manifold, obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces, and show general position theorems for non-orientable co. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Sprays (Mathematics) 
650 0 |a Minimal surfaces. 
650 0 |a Holomorphic mappings. 
650 0 |a Approximation theory. 
650 0 |a Analytic spaces. 
650 0 |a Affine differential geometry. 
650 6 |a Surfaces minimales. 
650 6 |a Applications holomorphes. 
650 6 |a Théorie de l'approximation. 
650 6 |a Espaces analytiques. 
650 6 |a Géométrie différentielle affine. 
650 7 |a Affine differential geometry  |2 fast 
650 7 |a Analytic spaces  |2 fast 
650 7 |a Approximation theory  |2 fast 
650 7 |a Holomorphic mappings  |2 fast 
650 7 |a Minimal surfaces  |2 fast 
650 7 |a Sprays (Mathematics)  |2 fast 
650 7 |a Several complex variables and analytic spaces {For infinite-dimensional holomorphy, see 46G20, 58B12} -- Local analytic geometry [See also 13-XX and 14-XX] -- Analytic subsets of affine space.  |2 msc 
650 7 |a Several complex variables and analytic spaces {For infinite-dimensional holomorphy, see 46G20, 58B12} -- Holomorphic convexity -- Holomorphic and polynomial approximation, Runge pairs, interpolation.  |2 msc 
700 1 |a Forstnerič, Franc. 
700 1 |a López, Francisco J. 
776 0 8 |i Print version:  |a Alarcón, Antonio  |t New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Mathbb{R}^{n}  |d Providence : American Mathematical Society,c2020  |z 9781470441616 
830 0 |a Memoirs of the American Mathematical Society Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6195962  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6195962 
994 |a 92  |b IZTAP