Direction Dependence in Statistical Modeling Methods of Analysis.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- About the Editors
- Notes on Contributors
- Acknowledgments
- Preface
- Part I Fundamental Concepts of Direction Dependence
- Chapter 1 From Correlation to Direction Dependence Analysis 1888-2018
- 1.1 Introduction
- 1.2 Correlation as a Symmetrical Concept of X and Y
- 1.3 Correlation as an Asymmetrical Concept of X and Y
- 1.4 Outlook and Conclusions
- References
- Chapter 2 Direction Dependence Analysis: Statistical Foundations and Applications
- 2.1 Some Origins of Direction Dependence Research
- 2.2 Causation and Asymmetry of Dependence
- 2.3 Foundations of Direction Dependence
- 2.3.1 Data Requirements
- 2.3.2 DDA Component I: Distributional Properties of Observed Variables
- 2.3.3 DDA Component II: Distributional Properties of Errors
- 2.3.4 DDA Component III: Independence Properties
- 2.3.5 Presence of Confounding
- 2.3.6 An Integrated Framework
- 2.4 Direction Dependence in Mediation
- 2.5 Direction Dependence in Moderation
- 2.6 Some Applications and Software Implementations
- 2.7 Conclusions and Future Directions
- References
- Chapter 3 The Use of Copulas for Directional Dependence Modeling
- 3.1 Introduction and Definitions
- 3.1.1 Why Copulas?
- 3.1.2 Defining Directional Dependence
- 3.2 Directional Dependence Between Two Numerical Variables
- 3.2.1 Asymmetric Copulas
- 3.2.2 Regression Setting
- 3.2.3 An Alternative Approach to Directional Dependence
- 3.3 Directional Association Between Two Categorical Variables
- 3.4 Concluding Remarks and Future Directions
- References
- Part II Direction Dependence in Continuous Variables
- Chapter 4 Asymmetry Properties of the Partial Correlation Coefficient: Foundations for Covariate Adjustment in Distribution-Based Direction Dependence Analysis
- 4.1 Asymmetry Properties of the Partial Correlation Coefficient
- 4.2 Direction Dependence Measures when Errors Are Non-Normal
- 4.3 Statistical Inference on Direction Dependence
- 4.4 Monte-Carlo Simulations
- 4.4.1 Study I: Parameter Recovery
- 4.4.1.1 Results
- 4.4.2 Study II: CI Coverage and Statistical Power
- 4.4.2.1 Type I Error Coverage
- 4.4.2.2 Statistical Power
- 4.5 Data Example
- 4.6 Discussion
- 4.6.1 Relation to Causal Inference Methods
- References
- Chapter 5 Recent Advances in Semi-Parametric Methods for Causal Discovery
- 5.1 Introduction
- 5.2 Linear Non-Gaussian Methods
- 5.2.1 LiNGAM
- 5.2.2 Hidden Common Causes
- 5.2.3 Time Series
- 5.2.4 Multiple Data Sets
- 5.2.5 Other Methodological Issues
- 5.3 Nonlinear Bivariate Methods
- 5.3.1 Additive Noise Models
- 5.3.1.1 Post-Nonlinear Models
- 5.3.1.2 Discrete Additive Noise Models
- 5.3.2 Independence of Mechanism and Input
- 5.3.2.1 Information-Geometric Approach for Causal Inference